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Addition of 1 weight % core material to a mantle

st source will have no effect on the isotopes of Sr, Nd,
Pb, and oxygen, which are well correlated with Os
isotopes in most OIBs [for example, Hawaii (18, 19)].
Core-mantle interaction would also buffer the £, of
0IBs to the iron-wustite buffer, which is three to four

* orders of magnitude lower than fOz's actually mea-

. gured in OIBs [Basaltic Volcanism Study Project

rgamon Press, New York, 1981)].
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' Integrated Optoelectronic Devices Based on
Conjugated Polymers

Henning Sirringhaus,* Nir Tessler, Richard H. Friend*
An all-polymer semiconductor integrated device is demonstrated with a high-mobility
conjugated polymer field-effect transistor (FET) driving a polymer light-emitting diode
(LED) of similar size. The FET uses regioregular poly(hexylthiophene). Its performance
sproaches that of inorganic amorphous silicon FETs, with field-effect mobilities of 0.05
to 0.1 square centimeters per volt second and ON-OFF current ratios of >10°. The high
mobility is attributed to the formation of extended polaron states as a result of local
self-organization, in contrast to the variable-range hopping of self-localized polarons
found in more disordered polymers. The FET-LED device represents a step toward
all-polymer optoelectronic integrated circuits such as active-matrix polymer LED displays.

Solution-;\mcussihlu conjugated polymers
are among the most promising candidates
for a cheap electronic and optoelectronic
technology on plastic substrates. Polymer
LEDs exceeding peak brightnesses of 10° ¢d
m? (1) and high-resolution video polymer
LED disph\\,’s (2) h:ivc hucn dcnmns[r;liud.
One of the main obstacles to all-polymer

Cavendish | «boratory, University of Cambridge, Mad-
gy Road, >ambridge CB3 OHE, UK.
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optoelectronic circuits is the lack of a poly-
mer FET with sufficiently high mobility and
ON-OFF ratio to achieve reasonable
switching speeds in logic circuirs (3) and to
drive polymer LEDs.

Conjugated polymer FETs (4) typically
show field-effect mobilities of pp = 10°¢
to 107* ecm? V! 57!, limited by variable-
range hopping between disordered polymer
chains and ON-OFF current ratios of <10*
(5). This is much too low for logic and
display applications, and therefore all previ-

:

ous approaches to drive polymer LEDs have
used polycrystalline (2) or amorphous silicon
(a-Si) (6) technology. Recently, a polymer
FET with a mobility of 0.01 to 0.04 cm? V-!
s~! and an ON-OFF ratio of 10? to 10* using
regioregular poly(hexylthiophene) (P3HT)
was described (7). The high mobility is re-
lated to structural order in the polymer film
induced by the regioregular head-to-tail
(HT) coupling of the hexyl side chains.
However, a clear understanding of the trans-
port mechanism giving rise to the relatively
high mobilities is still lacking.

Here, we report a considerably improved
P3HT FET reaching mobilities of 0.05 to
0.1 ecm? V! 57! and ON-OFF ratios of
>109, the performance of which starts to
rival thar of inorganic a-Si FETs and en-
ables us to demonstrate integrated optoelec-
tronic polymer devices. As an example, we
have chosen a simple pixel-like configura-
tion in which the FET supplies the current
to a polymer LED. This allows us to assess
the prospects of active-matrix addressing in
all-polymer LED displays.

To construct the multilayer device (Fig.
1A), we first fabricated the FET by spin-
coating a film of P3HT (500 to 700 A) (8)
onto a highly doped n*-Si wafer with a 2300
A SiO, gate oxide (capacitance C, = 15 nF
cm ). Au source-drain contacts were depos-
ited onto the P3HT through a shadow mask.
Then, a layer of SiO, was thermally evapo-
rated  through  another, mechanically
aligned, shadow mask to define the active
LED area on the finger-shaped Au FET drain
electrode acting as the hole-injecting anode
of the LED. A single layer of poly[2-me-
thoxy-5-(2"-ethyl-hexyloxy)-p-phenylene-
vinylene] (MEH-PPV) was spin-coated on
top. Evaporation of a semitransparent Ca-Ag
cathode completed the device. No photo-
lithographic steps were involved. The device
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:;? 1 {A) Cross section of the integrated P3HT FET and MEH-PPV LED. The device is a part

- OWninside the dashed area in the top left corner) of a full active-matrix polymer LED pixel. The
_Iar structure of the regioregular P3HT and its orientation relative to the SiO,, substrate and

€direction of the in-plane FET current /, are shown schematically. (B) Photograph of a FET-LED
One of the four “pixels” switched on. The MEH-PPV layer (orange) was made to cover the
Stratg only partially in order to make the underlying (blueish) P3HT layer visible.




