Macromolecules Proteins

Csaba Magyar, Institute of Enzymology, **Research Centre for Natural Sciences 2019 November**

Structure of proteins

Bioinformatical methods, protein modelling

Transmembrane proteins

Disordered proteins

Proteins are macromolecules built from amino acids

Almost exculsively L-enantiomers of amino acids are present in proteins. For sugars the oppisite if true (D-glucose).

Meaning of the word *proteos*: primary or "first place" proteins represent ~55% of the dry cell weight

Multiples roles: structural proteins enzymes antibodies communication transport receptors muscles

Protein translation

Amino acids are coded by the nucleic acids triplets

Translation speed depends on the codon, effect on protein folding

The 20 standard amino acids

3-letter code 1-letter code

From amino acids to proteins covalent peptide bond formation

Primary structure of proteins

sequence of amino acids connected by peptide bonds translated from mRNA using Genetic Code synthesis begins at N-terminal and terminates at C-terminal determines all properties of a protein

Alternating Orientations of side chains

Torsional angles

partial double bond nature

restricted rotation

bond lengths are almost constant

two dihedral angles describe the structure of the polypeptide backbone

Torsional angles

bond lengths are almost constant

two dihedral angles describe the structure of the polypeptide backbone

the structure of the side-chain can be given by additional dihedral angles

Structure of polypeptides

Secondary structure

Secondary structure is defined by the pattern of hydrogen bonds between the amino hydrogen and carboxyl oxygen atoms in the peptide backbone.

Secondary structural elements

alpha helix

Hydrogen bonds stabilize structure

Secondary structure

Secondary structure is defined by the pattern of hydrogen bonds between the amino hydrogen and carboxyl oxygen atoms in the peptide backbone.

Secondary structural elements

alpha helix

dipole moment

Hydrogen Bonds

NH R-H١ 0= R– R-HN 0 =R-R-HN o =R-R-HN $\mathbf{O}=$ NH NH

anti-parallel

parallel

Ramachandran Plot

not all phi-psi values are allowed

Ramachandran plot for a bad (left) and good (right) quality structure

High resolution (1.8 Å)

Supersecondary Structures

Primary structurem amino acid sequence – covalent peptide bonds Secondary / supersecondary structures – local interactions Tertiary / quaternary structures – longer range interactions

Structural protein with super secondary structures

Collagen **Connective tissue**, C1q

Keratin Hair, nails

Fibroin Silk

50 nm

09LungTEM

1/7/0 REMF

Actin filaments scaffold for cell motion and division, muscle contraction

globular monomer

filamentous

Hydroxyproline

Proline

Glycine

Partial Sequence

Structural Proteins

Keratins Fibrous Intermediate Filaments of Cytoskeleton Hair, nails, horns

Silk Beta sheets Repeating glycines

eye lens protein

Additional secondary structural elements

DSSP Define Secondary Structure of Proteins

Alpha Helix – 3/10 helix

Turns and loops

Secondary structural propensities

н.	Beta-St.	Reverse T.	
	0.72	0.82	
	0.84	0.9	
	0.48	1.34	
	0.39	1.24	
	1.4	0.54	
	0.98	0.84	
	0.52	1.01	
	0.58	1.77	
	0.8	0.81	
	1.67	0.47	High Propensity for
	1.22	0.57	
	0.69	1.07	Reverse Turns
	1.14	0.52	
	1.33	0.59	Proline SS breaker
	0.31	1.32	
	0.96	1.22	
	1.17	0.96	
	1.35	0.65	
	1.45	0.76	
	1.87	0.41	

Amino Acid Hydropathy

Amino Acid	One Letter Code	Hydropathy Score
Isoleucine	1	4.5
Valine	v	4.2
Leucine	L	3.8
Phenylalanine	F	2.8
Cysteine	С	2.5
Methionine	м	1.9
Alanine	Α	1.8
Glycine	G	-0.4
Threonine	т	-0.7
Tryptophan	w	-0.9
Serine	S	-0.8
Tyrosine	Y	-1.3
Proline	Р	-1.6
Histidine	н	-3.2
Glutamic acid	E	-3.5
Glutamine	Q	-3.5
Aspartic acid	D	-3.5
Asparagine	N	-3.5
Lysine	к	-3.9
Arginine	R	-4.5

Water soluble and membrane proteins

Hydrophobic Amino-**Acid Bias In Bilayer**

Hydrophilic Amino Acid Bias Outside of Bilayer

Folding of a Globular Protein

Unfolding of a Globular Protein

heat

Energetics of folding

Free enthalpy (Gibbs free energy) thermodamic potential describing the system at constant T and p $\Delta G = \Delta H - T \Delta S$ Α TS

U search

Chaperons / Heat Shock Proteins

provide proper environment for trapped folding / help in renaturation

Levinthal's paradoxon

- even if we represent a protein structu the degrees of freedom is huge
- a protein can not go through all possible conformations to find the lowest energy
- at 1 conformation/ps rate folding would take longer than the age of the universe
- folding usually occures at the ms s timescale
- resolution: guided folding by local interactions, subunit folding

even if we represent a protein structure by only the dihedral angles the number of

Forces Stabilizing Tertiary Structure

Forces Stabilizing Tertiary Structure

Hydrogen Bonds

Forces Stabilizing Tertiary Structure

Disulphide bonds: the only covalent bond

Hydrophobic interaction disruption of the solvent H-bond network

Denaturing/Unfolding Proteins

Break forces stabilizing them Mercaptoethanol breaks disulfide bonds Detergents disrupt hydrophobic interactions Heat breaks hydrogen bonds pH change alters ionic interactions **Chelators bind metal ions**

Methods to detect denaturation Fluorescence, UV, CD spectroscopy **DSC: Differential Scanning Calorimetry**

Protein stability

marginal stability, tuned flexibility / stability

thermal adaptation

40

30

ΔG (kcal/mol) 20

Anfinsen's dogma

For a small globular protein in its standard physiological environment, the native structure is determined only by the protein's amino acid sequence.

At the environmental conditions (temperature, solvent concentration and composition, ...) at which folding occurs, the native structure is a unique, stable and kinetically accessible minimum of the free energy.

Proteins requiring chaperones for folding, prions and amyloids are exceptions.

Protein Structural Domains

Leucine Zipper - Prot.-Prot. and Prot.-DNA Helix Turn Helix - Protein-DNA **Zinc Fingers SH Domains - Protein-Protein**

Helix-Turn-Helix

SH2 and SH3 domains

Zinc finger

Leucine zipper

Beta barrel

TIM barrel

Beta propeller

prion protein

Amyloids and Disease

- body. including important neurological ones involving prions. **Amyloid diseases include (affected protein in parentheses) -**
 - Alzheimer's disease (**Amyloid** β) Parkinson's disease (α -synuclein) Huntington's disease (huntingtin), Rheumatoid arthritis (serum amyloid A),

Amyloids - a collection of improperly folded **protein** aggregates found in the human

When misfolded, they are insoluble and contribute to some twenty human diseases

Structure determination methods

circular dichroism spectroscopy far UV near UV

В А **Assignment Matrix:** Secondary structure elements: Assignment (aki) Helix-1 Beta-1 Turn-1 Beta-2 α-Helical (HeL): 34.1% Map_DS3-1 k/i 2 1 3 4 HEL 1 0 0 0 1 β-strand (BS): 9.5% BS 2 0 0 1 0 β-Turns (BT): 4.7% BT 3 0 1 0 0 3-Helical (3HT): 18.3% 3HT 4 0 1 0 0 Irregular β (IRB): 1.6% IRB 5 0 0 0 1 LH Turns (LHT): 2.4% LHT 6 0 0 0 0 Other Turns (OTT): 13.5% OTT 0 0 0 7 0 Unclassified (UC): 15.9% UC 8 0 0 0 D Basis spectra (DS3-1) 80 Basis spectrum coefficients: Helix-1 (C1): 0.341 {Hel2 } Helix-1 Beta-1 (C₂): 0.142 {BS₃ + BT₅} Turn-1 (C₃): 0.183 {3HT₁} 40 Beta-1 Turn-1 $[\Theta] (10^3 \text{ deg}^* \text{cm}^2/\text{dmol})$ Beta-2 (C₄): 0.016 {IRβ₄} Other (C₅): 0.318 {LHT₆ + OTT₇ + UNC₈} Other Experiment 20 – Calculated *cm²/dmc 10 -40 001) [0] -10 Beta-2 R: 1.358 -20 220 200 240 260 180 200 180 220 240 λ (nm) λ (nm)

Infrared radiation absorption – molecular vibrations amide bands are influenced by secondary structure deconvolution of the spectra

hydrogen-deuterium exchange

X-ray crystallography

Crystal

Diffraction pattern

Electron density map

Protein model

chemical shift depens on the environment pulse sequences – selection NMR spectra distance constraints model building

No external magnetic field

Apply external magnetic field B₀

Cryo-EM

CRYO-ELECTRON MICROSCOPY

A beam of electron is fired at a frozen protein solution. The emerging scattered electrons pass through a lens to create a magnified image on the detector, from which their structure can be worked out.

Comparison of methods

	Advantages	Disadvantages	Objects	Resolution
X-ray Crystallography	 Well developed High resolution Broad molecular weight range Easy for model building 	 Difficult for crystallization Difficult for diffraction Solid structure preferred Static crystalline state structure 	 Crystallizable samples Soluble proteins, membrane proteins, ribosomes, DNA/RNA and protein complexes 	High
NMR	 High resolution 3D structure in solution Good for dynamic study 	 Need for high sample purity Difficult for sample preparation Difficult for computational simulation 	• MWs below 40–50 kDa • Water soluble samples	High
Cryo-EM	 Easy sample preparation Structure in native state Small sample size 	 Relatively low resolution Applicable to samples of high molecular weights only Highly dependent on EM techniques Costly EM equipment 	 >150 kDa Virions, membrane proteins, large proteins, ribosomes, complex compounds 	Relatively Low (<3.5 Å)

Thank your for your attention!