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ABSTRACT: Resonance (vibrational) Raman Optical Activity (ROA) spectra of six
chiral single-walled carbon nanotubes (SWCNTs) are studied by theoretical means.
Calculations are performed imposing line group symmetry. Polarizability tensors,
computed at the π-electron level, are differentiated with respect to DFT normal modes
to generate spectral intensities. This computational protocol yields a ROA spectrum in
good agreement with the only experiment on SWCNT, available at present. In addition to
the conventional periodic electric dipole operator we introduce magnetic dipole and
electric quadrupole operators, suitable for conventional k-space calculations. Consequences of the complex nature of the wave
function on the scattering cross section are discussed in detail. The resonance phenomenon is accounted for by the short time
approximation. Involvement of fundamental vibrations in the region of the intermediate frequency modes is found to be more
notable in ROA than in Raman spectra. Calculations indicate exceptionally strong resonance enhancement of SWCNT ROA
signals. Resonance ROA profile of the (6,5) tube shows an interesting sign change that may be exploited experimentally for
SWCNT identification.

1. INTRODUCTION

As modern applications require increasingly more precise
control over even the absolute configuration of single-walled
carbon nanotubes (SWCNTs), significant attention has turned
toward separation and characterization of chiral SWCNTs.1,2

Large scale preparation procedures3 yield mixtures of these
nanotubes with a variety of geometrical structures, described by
the so-called chiral vector (n,m).4,5 Except for the n = m
(armchair) and m = 0 (zigzag) cases, all SWCNTs are
inherently chiral, which results from the lack of mirror
symmetry in their structure. Although length, diameter or
even chiral vector coordinate specific samples can be prepared
routinely using advanced separation methodologies, the right-
handed (P) and left-handed (M) enantiomers are often present
in racemic mixtures due to achiral synthetic conditions.6

Various solutions for enrichment in a single enantiomer
emerged only recently and are still actively investigated.7−9

Techniques under current development exploit enantiomer
specific interactions between a SWCNT and a carefully
designed chiral bonding agent.9,10 Chiral complexations were
carried out with DNA strands,11 chiral polymers,12 nano-
tweezers,13,14 and chiral surfactants15,16 and then standard
separation ideas, chromatography,11,17 extraction,12−14,18 and
ultracentrifugation15,16 yielded optically active SWCNT sam-
ples. Bottom-up approaches like chemical synthesis19 and
specific SWCNT templated selective nanotube growth20,21

represent promising alternatives to gain ultimate experimental
control over SWCNT structure.
Raman spectroscopy is a standard tool of SWCNT

characterization; it is, however, blind to chiral information as

per se. There are only a limited number of studies on SWCNT
optical activity. Most of these consider electronic circular
dichroism spectroscopy, either from the experimen-
tal7,12−16,22−24 or from the theoretical side.25−28 Raman optical
activity (ROA) is an emerging, alternative chiroptical technique
for chiral SWCNT characterization. To the best of our
knowledge, our previous work was the first theoretical study
on SWCNT resonance ROA (RROA).29 The recently reported
study of Magg et al.30 is the first experiment in this line. Let us
note for completeness that handedness of an individual
SWCNT can also be investigated by scanning probe
microscopy31,32 and transmission electron microscopy.33

The present work is concerned with theoretical description
of the vibrational RROA phenomenon for SWCNTs. In the
RROA process either the incident or the Raman scattered
photon is in resonance with an electronic transition of the
system. Optical activity accompanies inelastic light scattering,
which involves a vibrational transition.34 In the most frequent
arrangement of SCPU(180°)-ROA, backscattered circular
polarized (SCP) light is measured originating from an
unpolarized (U) incident laser beam. ROA is an excellent
complementary method to electronic circular dichroism, as it
samples the numerous vibrations of the system, often revealing
a wealth of structural information.34−36 Regarding that some of
the well-established techniques for SWCNT characterization
are based on the Raman effect,37 e.g., single nanotube
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spectroscopy, the related optical activity spectroscopy may gain
special significance in the future.
In lack of experiment our previous theoretical work

suggested that the (6,5) tube exhibits exceptionally large
RROA signal at the experimentally most relevant 532 nm
incident light wavelength. Recently, Magg et al.30 proved that
RROA is indeed measurable in spite of experimental challenges,
such as small enantiomeric excess and small sample
concentration. In the experiment of Magg et al. enhancement
of the ROA intensity originates in the resonance between
Stokes-shifted photons and the second electronic transition of
the (6,5) nanotube.30

Computations are indispensable for assigning ROA spectra.
Spectrum simulation essentially involves the calculation of
spectral line positions (i.e., vibrational frequencies) and line
intensities. Vibrational normal modes are usually obtained
within the harmonic approximation. This step of the
computation represents the bottleneck in the case of large
(finite) molecules38 or periodic systems with large unit cells.
Iterative subspace techniques39,40 or linear scaling evaluation of
the molecular Hessian41 might change this trend in the near
future. In this work the helical symmetry of the chiral SWCNTs
was partially exploited to make the normal mode computation
manageable.42,43

Simulation of spectral intensities necessitates computation
derivatives of ROA polarizability tensors with respect to the
normal coordinates.34,44 In this regard, relying on the linear
response of single determinantal models [either Hartree−Fock
or Kohn−Sham density functional theory (DFT)]38,44,45 has
been found sufficient in most cases for reproducing
experimental intensities.46−50 Approximate methods based on
the fragmentation of a large molecule51−53 extended the size of
reachable systems significantly but are inapplicable to the
indivisible delocalized π-electron system of the nanotubes. One
cannot rely on efficient ab initio ROA implementations38,54,55

for modeling nonfinite SWCNTs either, for the following
reasons: (i) lack of ROA polarizability tensor expressions
suitable for periodic systems; (ii) cost-efficient treatment of
resonance is rarely available;55 (iii) restrictions to real valued
wave functions and corresponding purely real or imaginary
polarizability tensors.
These limitations are overcome in our present implementa-

tion by (i) introducing a formula for the magnetic dipole and
the electric quadrupole operators that is periodic (i.e.,
commutes with translational operators) in analogy with the
well-known expression for the periodic electric dipole
operator,56 applied frequently, e.g., for simulating Raman
spectra of periodic systems.57−59 Regarding (ii), we adopt the
short time approximation of Jensen et al.55 to account for the
resonance phenomenon. Considering (iii), genuinely complex
ROA polarizability derivatives are evaluated with complex,
(translationally) periodic wave functions. Scattering cross
section expressions, valid in the case of complex polarizability
tensors, as formulated according to the general ROA theory of
Nafie,34,60,61 are implemented.
Similarly to our previous studies,29,62 spectral cross sections

are computed at the π-electron level, whereas structure
optimization and vibrational modes are obtained with DFT.
This computational protocol was validated by comparison to
experimental Raman and accurate theoretical ROA spectra of
common chiral fullerenes, such as C76 and C84.

29,62 For systems
with just slightly curved surface, like C76 or C84, a tight-binding
(TB) approximation at the π-electron level already gives

qualitatively good spectra, which has been adopted for a
periodic RROA computation previously.29 The TB model of ref
29 was improved here in two regards, the so-called band
polarization terms (Appendix B) were included and a simple
level-shift is added to the one-particle energies, which
correction was successful in the case of C76 in ref 62.
In what follows we first give a comprehensive account of the

theoretical approach underlying our calculations. In section 2
the selected π-electron model and the computation of spectral
intensities are introduced briefly, but the focus is kept on
features that have not been discussed previously29,62 and that
are necessary for treating periodic systems. These theoretical
advancements were partly implied but not dwelled on in our
previous report.29 Our novel applications are presented in
section 3, giving RROA spectra for six chiral SWCNTs with
relatively small diameters. Our previous report resorted to the
three most important fundamental modes of the (6,5) tube, and
we now account for all fundamental vibrations. Note that
defect-induced bands, bands originating from higher order
scattering processes, etc. that appear in experimental Raman
spectra are not considered in the present study. Besides
simulating RROA spectra, we compute dependence of the ROA
signal on the incident laser frequency for some spectral bands.

2. THEORY

2.1. Model Hamiltonian. A symmetry-adapted version of
the tight-binding (TB) π-electron model, introduced in our
previous reports,29,62,63 is applied presently. Elements of the
model are briefly recapitulated for completeness. The present
TB model is a Hückel-type π-electron model that is periodic
symmetry adapted and its first-neighbor interaction terms are
bond-length dependent so that derivatives with respect to
Cartesian coordinates can be formulated.
Notation k ∈ [−π/a, π/a] is adopted for the irreducible

representations of the translational group (k is the so-called
quasi-momentum). We assume that a quasi-one-dimensional
system is aligned parallel with axis z and the lattice constant is
denoted by a.
The field-independent Hamiltonian is given as

∫ ∑ ∑̂ = ̂ ̂
μν

μν
σ

μσ νσ
+H k H k a k a kd ( ) ( ) ( )

(1)

where σ stands for the spin-index and operators aμ̂σ
+ (k) (aν̂σ(k))

create (annihilate) the so-called Bloch orbitals, ϕμ(k,r).
Orthonormalized orbitals (one centered on each carbon
atom), denoted by χμ(r), are used to generate elements of
the orthonormal translational symmetry adapted basis accord-
ing to

∑ϕ
π
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+

̂
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Operator T̂na translates with n·a in direction z and μ = 1, ..., 2q
with 2q standing for the number of atoms in the reference cell.
(The analogues of AO χμ(r) in the neighboring unit cells of the
reference one will be referred to as χμ−2q(r) = T̂a

−1χμ(r) and
χμ+2q(r) = T̂a χμ(r), respectively.) N denotes the number of unit
cells that tends to infinity when the thermodynamic limit is
taken.
Due to the nearest neighbor approximation, the lattice sum

for Hμν(k) takes the particularly simple form
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− +H k h h h( ) e eka
q

ka
q

i
, 2 ,

i
, 2 (3)

with the so-called hopping integral

= −μ λ
ζ− μλh h e R

, 0

involving two parameters, h0 and ζ, which are fitted to
experimental excitation energies of ethylene and polyacety-
lene.64,65 In the above, Rμλ stands for the bond length. Note
that hμ,λ is nonzero only if sites μ and λ are first neighbors.
Diagonalization of the TB model Hamiltonian yields the

bands [εi(k)] and the corresponding crystal orbitals (COs):

∑φ ϕ=
μ

μ μk C k kr r( , ) ( ) ( , )i i
(4)

2.2. Spectral Intensities. When periodic symmetry is
assumed, spectral line intensities are more involved than in the
case of finite systems. This subject, merely mentioned
previously,29 is addressed here in detail.
The SWCNTs of our interest exhibit their second excitation

energy around 2 eV, lying close below commonly applied
experimental incident frequencies (e.g., 532 nm = 2.33 eV).
This calls for a ROA formulation suitable for resonance. Explicit
treatment of vibronic transitions66−68 is out of question due to
the large number of states to be considered. For this reason we
account for the resonance by applying the short time
approximation (STA).55 Polarizabilities35,55 needed for the
scattering cross sections of Raman and ROA processes within
the STA are similar to the formulas valid in the far from
resonance case. The chief difference is the appearance of a
damping parameter, Γ that is related to the lifetime of a virtual
excited state in a reciprocal manner. For the sake of simplicity,
we resort to investigating the Stokes process.
Assuming a single determinant model for a quasi-one-

dimensional system exhibiting translational symmetry, a general
expression for polarizabilities within the STA29,63 is given by

∫ ∑ ∑τ
ω ω

ω ω

=
− − Γ

+
+ + Γ
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(5)

which is the extension of the STA polarizability expression of
ref 55 to the periodic case. Indices j (a) refer to occupied
(virtual) COs and ω denotes the frequency of the incident light
(ℏ = 1). The orbital energy difference is denoted by ωaj(k) =
εa(k) − εj(k) for a given k value. Greek indices α, β, γ, ... stand
for Cartesian components. Finally, Vβ is a unified notation for
multipole moments. Choosing the electric dipole (dβ) for Vβ in
eq 5 gives the electric dipole−electric dipole polarizability
(ααβ), substituting the magnetic dipole (mβ) for Vβ leads to the
electric dipole−magnetic dipole polarizability (Gαβ), whereas
using the electric quadrupole (Θβ̅ = Θβγ) as Vβ generates the
electric dipole−electric quadrupole polarizability (Aαβ). (For
transparency, hyperindex β = βγ is simply denoted by β when
used with V.)
Orientational averaging leads to certain combinations of

polarizability tensor matrix elements, the so-called invari-
ants.34,60 Using the symmetric and antisymmetric part of τ

τ τ τ= +αβ αβ βα( )/2S
(6)

τ τ τ= −αβ αβ βα( )/2A
(7)

the invariants are expressed as34,61
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where ϵαβγ is the Levi−Civita symbol.
For real valued orbitals, ααβ

A = 0 leads to a simplification of
the above invariants,55 as a matter of fact βA(α)

2 = βA(A)
2 = 0.

For infinite systems, ααβ
A does not vanish, as a consequence of

basis functions of eq 2 being complex valued. The appearance
of antisymmetric invariants complicates the theory on one
hand; on the other hand it offers an enrichment of experimental
observables. So far, symmetric invariants have been sufficient
for computing ROA spectral intensities of finite molecules
within the far from resonance approximation or STA.34

Contribution of the antisymmetric invariants might be
detectable for the first time for periodic systems. By variation
of experimental conditions, it may even become possible to
deduce the value of βA(A) itself and compare it to theoretical
results, which could provide further verification of the so far
only theorized levels of ROA description.69,70

Cross sections for the SCPU(180°) experimental arrange-
ment are finally expressed as34,61

σ α β α β α° = + +K sd (180 ) [90 ( ) 14 ( ) 10 ( ) ]u p
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(14)
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S

2
S

2
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2

(15)

with Kp = (1/2ωp)(1/90)(μ0/(4π))
2(ω − ωp)

3ω. Here, μ0
stands for the permeability of vacuum, c denotes the speed of
light and ωp is the harmonic vibrational frequency of normal
mode p. Upper index p refers to polarizability derivative,
computed with respect to normal mode Qp, taken at the
equilibrium geometry, i.e.

τ
τ

=
∂
∂αβ

αβ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Q

p

p 0 (16)

2.3. Periodic Multipole Moments. Working with periodic
symmetry necessitates to revise not only spectral intensities but
also multipole moments. Multipole operators used commonly
for finite systems lead to aperiodic, occasionally ill-defined
matrix elements for periodic systems.71−73 Difficulties originate
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in the system being infinitely extended. For an infinite system,
the concept of multipoles itself, arising as low order terms of a
Taylor expansion with respect to the spatial coordinate,
becomes questionable.
We adopted in ref 29 and apply here an approach where all

operators describing light-matter interaction exhibit transla-
tional symmetry. This facilitates relying on multipoles as long as
the wavelength of the incident light is orders of magnitude
larger than the lattice constant, which condition is fulfilled for
the 532 nm incident light. Once the translational symmetry
adapted multipoles are formulated, conventional k-space
considerations can be used to simulate ROA spectra.
In this section the multipole operators underlying our study

are presented briefly. Of the three multipoles necessary for
ROA spectral intensities, the electric dipole received by far the
most consideration under the periodic boundary condition.
Our notion that any form of the electric quadrupole and the
magnetic dipole operators, applicable for periodic systems is
not available in the literature is confirmed by a recent review.74

Reformulation of the conventional coordinate operator of r,̂
assuming that it is acting on a lattice periodic function, has been
known for long71−73 as

̂ = ∇̂ − ∇̂̂ − ̂r ie e ik k
kr kri i

(17)

with ∇̂ = ∂
∂

∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟, ,k

kx ky kz
. In the field of quantum chemistry, it

was Otto56 who first considered eq 17 for periodic systems,
resorting to the first term on the right-hand side, arguing that
this term conserves translational symmetry. The translational
symmetry adapted coordinate

̂ = ∇̂ = ̂ + ∇̂̂ − ̂ rie e ik k
kr kri i

(18)

has become the cornerstone of many linear response based
implementations for molecular property computation75−78

since then. It has been established on the basis of the vector
potential method79,80 as well as in the framework of the
modern theory of polarization81,82 that the electric dipole
corresponding to operator ̂ of eq 18 indeed describes the
interaction between the homogeneous electric field and a
translationally periodic system.
We proceed now by formulating a magnetic dipole and an

electric quadrupole showing periodic symmetry, in analogy with
the line of thought presented by Otto.56 The present approach
can be interpreted as omission of any polarization current
induced by the second term on the right-hand side of eq 17, as
the electromagnetic field is relatively weak and the band gap is
nonzero.56,83 Using a similar, somewhat heuristic argument, in
which only the periodically symmetric terms are kept, Wannier
formulated72 the following expression for the vector potential
in the periodic case:

̂ = × ̂ + ∇̂ = × ̂A r B r B( )
1
2

( i )
1
2k (19)

with B being the field strength of the homogeneous magnetic
field. (Here and in the following atomic units are used, thus ℏ =
1, e = 1, and me = 1.) Subjecting the perturbation of p̂·Â(r)
corresponding to B to simple manipulations, one can recognize
a translationally periodic magnetic dipole operator:

̂ · × ̂ = · ̂ × ̂ = − · ̂⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
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⎞
⎠p pB B B

1
2

1
2 (20)

Note that the same operator is obtained, if the translationally
symmetric coordinate, ̂ is substituted to the usual expression
of the magnetic dipole operator:

̂ = − ̂ × p̂
1
2 (21)

Operator ̂ is clearly periodic, because both ̂ and p̂
commute with T̂na. Further justification of eq 21 is provided on
the grounds of the modern theory of orbital magnetization
(MTOM).84,85 As presented in Appendix A, orbital magnet-

ization computed with ̂ is equivalent to the MTOM
expression for nonmetallic systems.
Analogously, the traceless quadrupole moment, expressed

with the translationally invariant coordinate, ̂ reads

∑δ̂ = − ̂ ̂ + ̂
αβ α β αβ

λ
λ

3
2

1
2

2

(22)

Expression of eq 22 obviously commutes with T̂na.
Matrix elements of the above periodic multipole operators

with COs, necessary to evaluate eq 5, are collected in Appendix
B. Note that in the case of SWCNTS the reformulation of eq
18 affects only coordinate z and the related components of the
magnetic dipole and electric quadrupole. Coordinates x and y
remain unaffected, our system being quasi-one-dimensional.
For the sake of completeness we note that a velocity based

formulation offers an alternative route to compute spectro-
scopic properties of periodic systems. Utilizing the equation of
motion (EOM) for periodic systems:86

̂ = ̂ ̂ = ̂ ∇̂̂ − ̂p H Hi[ , ] i[ ,ie e ]k
kr kri i

(23)

and considering eigenfunctions of the Hamiltonian (non-
diagonal) matrix elements of the coordinate can be expressed
via matrix elements of the momentum, the latter being
obviously translationally invariant. The simplicity of this
approach has motivated many implementations.86−88 However,
relying on the velocity formulation has several drawbacks.
Molecular properties based on the velocity or length (i.e.,
coordinate operator) formulation might differ significantly with
noncomplete basis sets.86 Moreover, if the model Hamiltonian
does not commute with r ̂ (e.g., involves exact Hartree−Fock
exchange), use of the periodic coordinate operator cannot be
avoided.89,90

3. RESULTS AND DISCUSSION
3.1. Computational Details. The above presented Raman

and ROA theory applicable for semiconductor SWCNTs is
implemented in our own program. We discuss here the most
important aspects of computations and refer to our previous
reports29,62,63 for further details.
Raman and ROA spectra were simulated for six semi-

conducting, chiral SWCNTs, with chiral indices4,91 (6,5), (7,5),
(11,1), (9,5), (11,4), and (13,2). We considered P type
handedness25 for all the tubes, which corresponds to the (−)
enantiomer in the case of (6,5). Diameter of the tubes studied
lies in the range 7.5−11.0 Å; their curvature is, therefore,
comparable to or smaller than the curvature of C76 and C84.
Large curvature may induce ill effects in the present theoretical
approach, because it has been demonstrated that second and
further neighbor interactions are not negligible92 in that case. It
has also been shown that the ROA spectrum computed at the
TB level is prone to significant errors in the extreme case of
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C28.
62 For this reason we have selected nanotubes similar in

diameter to the model fullerenes for which the computational
protocol was tested successfully.29,62,63

A specific feature of our treatment is that the π-electron
model of section 2 is used for calculating spectral intensities,
whereas geometry optimization and the computation of
dynamical (Hessian) matrix elements is carried out at the
density functional level of theory. The VASP program
package93 was applied for the latter utilizing the local density
approximation (LDA) with the projector augmented wave
method, 400 eV plane wave energy cutoff and a 1 × 1 × 5 γ
point centered Monkhorst−Pack set of k-points. For further
details see refs 42 and 43.
To reduce computational effort, normal modes of carbon

nanotubes in their translational unit cell are calculated with
imposing helical symmetry. The translational unit cell of a
nanotube, containing 2q atoms, can be built from two carbon
atoms in its helical unit cell using rotations and screw axis
symmetry operations.94,95 Analogously, instead of calculating all
elements of the 6q × 6q force constant matrix, it is sufficient to
compute a 6 × 6q part of the Hessian describing the interaction
of the two atoms in the reference helical cell with all atoms in
the translational unit cell. Finally, one can apply the above
symmetry operations to construct the 6q × 6q dynamical
matrix43,96,97 and to assign the resulting normal modes (of the
translational unit cell) to the irreducible representations in the
helical line group.94,95

On the basis of these helical symmetry considera-
tions,94,95,98−100 26 Raman and ROA active fundamental
vibrations were identified in the previous work of Rusznyaḱ
et al.,96 prior to the evaluation of the polarizability tensors here.
The assignment of the theoretical spectra on Figures 1 and 3
were performed by utilizing these symmetry considerations.
Among these 26 modes the RBM, G−, and G+ have been the
most relevant experimentally.4,5 The RBM mainly consists of
radial movement of the carbon atoms perpendicular to the
SWCNT cylinder. The G− and G+ modes originate from the in-
plane vibrations of graphene and consist mainly of in plane
stretching perpendicular and parallel, respectively, to the axis of
the SWCNT. The remaining one one-dimensional and 11 pairs
of doubly degenerate fundamental modes, lying in the region of
the so-called intermediate frequency modes (IFM),101−104 have
been less frequently observed.105 Let us note that only the
fundamental IFMs are studied here, the combinational or defect
induced modes of the IFM region are not considered presently.
Polarizability derivatives, cf. eq 16, are computed by

numerical differentiation with respect to only the 26 Raman
and ROA active normal coordinates. For cost efficiency,
numerical differentiation is preferable to analytical derivatives
as only 26·2 + 1 = 53 different polarizabilities are to be
computed in the case of a three-point numerical procedure. At
contrast with this, the analytical treatment requires differ-
entiation with respect to all Cartesian coordinates of all atoms
in the translational unit cell, even if only 26 normal modes are
to be considered eventually.

Scattering cross sections were evaluated at the incident light
frequency of 532 nm, relatively close to resonance in the case of
all six SWCNTs. A system-independent damping parameter, Γ
= 40.8 meV (=1.5 mEh) was applied in all presented
computations. This choice is close both to the experimentally
and computationally obtained value of 30−50 meV broad-
ening106−108 for SWCNTs lying in the same diameter range as
our structures.
Following the protocol established previously in the case of

fullerenes,62 excitation energies of the present TB model are
shifted so that the resulting lowest unoccupied-highest
occupied CO energy difference of the TB model (ωLH(k))
without the level shift matches the experimental first excitation
energy (E11)

109,110 of the given nanotube. The final expression
for the denominators in eq 5 accordingly reads

ω ω ω+ − ± ± Γk E k( ) ( ( )) iaj 11 LH (24)

Let us note that this correction was not yet applied in our
previous RROA study.29

Integration over the Brillouin zone is carried out numerically
utilizing the Monkhorst−Pack scheme.111 Numerical tests
indicated relatively fast convergence of the Raman/ROA
cross sections with the number of integration grid points, Nk
(i.e., spectra obtained with Nk = 21 could not be distinguished
from that of Nk = 61). For this reason Nk = 21 was applied in all
examples.
Raman and ROA cross sections for a given vibrational

frequency are depicted as Lorentzian curves with 5 cm−1 line
width. The spectral regions (e.g., Figure 1) are split into two
intervals to allow for better perceptibility of the less intense
spectral bands in the smaller wavenumber region. Visual
comparison is further assisted by normalizing areas below
spectral curves separately for the split intervals. Relative
normalization factor ( f), shown in figure labels as “xf ” for
each interval and nanotube type, gives the ratio of the areas
under the spectral curve of (11,4) and of the actual nanotube.

3.2. Resonance Raman Spectra. We begin the analysis
with the comparison of TB and experimental SWCNT Raman
spectra to assess the accuracy of our computational method.
Spectral peak positions in the case of the (6,5) tube being

316, 1549, and 1594 cm−1 for the (RBM, G−, G+) vibrations
agree well with the recent experimental data30,105 of 309,
1526−1528, and 1589 cm−1. Regarding the remaining modes
besides RBM, G−, G+, their LDA frequencies are compared in
Table 1 to recent theoretical (extended tight-binding, ETB)
results as experimental information is only available for a couple
of these transitions,101−104 whereas the ETB results were
computed for all vibrations of our interest. The two sets of
computed data in Table 1 agree within 30−40 cm−1. This is
acceptable, based on the fact that ETB results match measured
frequencies within 20−30 cm−1, when the experimental values
are available,105 and the quality of LDA and ETB frequencies
are comparable in the case of RBM, G−, and G+.
Computed intensities are displayed in Figure 1, showing

Raman spectra of the six selected SWCNTs. The three most

Table 1. Vibrational Frequencies of the Three Most Important One-Dimensional (RBM, G−, G+) and the 11 Doubly Degenerate
(irrep E) Fundamental Vibrational Modes of the (6,5) SWCNT in cm−1 Units Computed with the ETB105 Method and the
Presently Applied LDA Approach (Section 3.1)

modes RBM G− G+

LDA 79 189 316 355 429 650 846 861 1525 1549 1563 1592 1594 1600
ETB 86 213 294 397 407 616 874 881 1521 1575 1548 1568 1588 1570
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intense vibrational transitions can be recognized at first sight:
the strongly diameter-dependent RBM in panel A and the G−

and G+ modes in panel B, the latter around 1600 cm−1. (For
most cases IFMs are an order of magnitude less intense than
the RBM and G modes and can only be observed in Figure 1 in
the cases of (7,5) and (13,2). The intensities of the IFMs are
comparable for all six examples; the reason for their appearance
on the (7,5) and (13,2) spectra is that the intensity of their G+

mode is at least an order of magnitude weaker compared to the
G+ intensity of the other four selected nanotubes.)
The intensity ratio for RBM, G−, and G+ in the case of the

(6,5) tube is 1/144:1/16:1 by the present TB approach, in
qualitative agreement with the experimental trend (the same
ratio is approximately 1/70:1/7:130), though the intensity of
the RBM and G− is underestimated compared to G+. This
parallels the previous finding29,62 on the reliability of the
absolute intensity values of the present TB model; i.e., the more
stretching character a vibration exhibits, the better the
electron−phonon coupling is described. The intensity of
vibrations with significant bending or torsion component is
less satisfactory than those being essentially stretching modes.
Because bending and torsion character increases in the
sequence G+, G−, and RBM, we expect the TB intensity of
G+ to be the most reliable, whereas the intensity of the RBM is
probably the most underestimated by our model.

As relative normalization factors shown in Figure 1 reflect,
Raman intensities are highly sensitive to excitation energies of
the given SWCNT. Excitation energies and spectral intensities
displayed for the G+ band in Table 2 supplement this
information to rationalize the occasional orders of magnitude
change in the intensity. Exceptionally large amplification occurs
for nanotubes with electronic transitions close to 2.3 eV (c.f.
E22 and E33 in Table 2).
Resonance amplification depends strongly on the incident

light frequency. This effect is illustrated by Figure 2, showing
the intensity as a function of ω, the so-called resonance profile,
on the example of the RBM, G+, and G− modes of the (6,5)
tube.

The largest intensity increase due to resonance is observed
around 1.26−1.27 eV, in good agreement with the experimental
value of the first electronic excitation energy,115 as a trivial
consequence of the level shift introduced in eq 24. A zoom into
the tail of the curves, displayed in the inset of Figure 2, shows
two additional maxima. The peak around 2.2 eV is in
accordance with the second electronic transition energy
assessed by the density of states computed on the basis of
the (level shifted) TB model, as well as with the experimental
value of E22 = 2.19 eV. The position of the peak in the middle,
around 1.7 eV, corresponds to the difference between the first
and second Van Hove peaks of the density of states (1.71 eV)
in agreement with the experimentally observed E12 = 1.73 eV

Figure 1. Unpolarized backscattering Raman cross sections of selected
SWCNTs at 532 nm. Spectra of panel A are normalized over the
wavenumber interval [0, 800] cm−1, panel B over [800, 1800] cm−1.
Relative normalization factors are computed with respect to the
spectrum of (11,4). See text for further notations.

Table 2. Relative Maxima of Raman and ROA Intensities of the G+ Band by the TB Method Relative to the Intensity of the Most
Intense Band (at 3194 cm−1) of the Routinely Measured Organic Molecule, Methyloxirane112 a

SWCNT diameter (Å) 2q E11 (eV) E22 (eV) E33 (eV) Raman ROA

(6,5) 7.5 364 1.27 2.19 3.60 3.2 × 108 4.1 × 109

(7,5) 8.2 436 1.21 1.93 3.68 9.7 × 106 2.9 × 108

(11,1) 9.0 532 0.98 2.03 2.88 1.4 × 108 3.2 × 109

(9,5) 9.6 604 1.00 1.85 3.05 4.2 × 108 5.7 × 109

(11,4) 10.5 724 0.90 1.74 2.78 1.6 × 108 4.5 × 108

(13,2) 11.0 796 0.95 1.44 3.08 1.1 × 107 2.1 × 108

aNonresonance (ω = 532 nm) methyloxirane spectra are computed by the G09 program package,113 utilizing the B3LYP density functional and the
aug(sp)-cc-pVDZ basis.54 Geometrical parameters of the SWCNTs are taken from the database of Rusznyaḱ et al.114 Experimental electronic
excitation energies E11, E22, and E33 are collected from refs 109 and 110. The number of atoms in the translational unit cell is denoted by 2q. See text
for further details.

Figure 2. Resonance Raman profile of SWCNT (6,5) using the TB
approximation. The RBM intensity is scaled by a factor of 700, and G−

is multiplied by 10 to match the magnitude of G+.
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transition. The 1 → 2 transition requires circularly polarized
light with nonzero perpendicular component to the tube
axis,116 which is also allowed in our case. On the basis of Figure
2, approximately 1000 nm laser frequency is the optimal choice
for the largest amplification by resonance.
The above findings allow to shortly conclude that the TB

Raman spectra is in qualitative agreement with experimental
and theoretical data available in the literature.
3.3. Resonance ROA Spectra. Comparing the TB ROA

spectrum for the (6,5) tube, depicted in Figure 3, with the

recent measurement of Magg et al.,30 the sign of the G modes
as well as the intensity ratio 1:5 of G− and G+ match the
experiment perfectly. Experiment and theory are also in accord
in the RBM being much less intense than G+, their intensity
ratio of 1:83 compares to the ca. 1:100 value of the experiment.
Regarding the sign of RBM, the theoretical and experimental

spectra are in contradiction. The source of this discrepancy
might be either the approximate nature of our model or
experimental difficulties or both and deserves further
investigation.
Considering the experiment, the close to one signal-to-noise

ratio in the region of the RBM could be improved, which is
important, because in such situations the RBM intensity value
might be strongly affected by the emissive background removal
procedure. Furthermore, by careful analysis Magg et al. find
that the contribution of (10,0) and (9,3) contaminants to the
Raman spectrum in the RBM region (around 309 cm−1) is
comparable to or even larger than the signal of (6,5) itself (see
Figure S2 of ref 30). This effect (easily argued by a stronger
resonance enhancement of the contaminants at 532 nm) might
have shown up in the ROA spectrum as well, because (9,3) is
chiral. Unfortunately our implementation is not suitable for
computing the ROA spectrum of the metallic (9,3) tube; we
are, therefore, not able to investigate this aspect.
Reliability of our semiempirical approach considering the

sign of the RBM ROA signal would also be highly desirable to
verify by comparison to more involved theoretical treatments.
This is, however, out of the applicability of any program
available presently. Such an efficient and accurate implementa-
tion would probably require the full exploitation of helical

symmetry at least at the DFT level of theory, like it has been
reported recently by Dovesi et al. for the case of dipole
polarizabilities.117 An alternative line of improvement could be
to include vibronic detail in the formulation of the ROA
polarizability tensors,66−68 as it is not the 532 nm laser
frequency but the Stokes-shifted frequency that is found in
close resonance with the E22 transition of the (6,5) nanotube.30

Excitation energy values of Table 2 suggest that one cannot
assume strong resonance with only one electronic transition for
all SWCNTs and generally cannot rely on the single excited
state limit.66 Approaches taking into account a couple of excited
states have been proposed for small molecules,67,68 but their
application for SWCNTs is still too demanding.
Returning to the analysis of Figure 3, significant contribution

of IFMs to the ROA spectra is observed, which represents a
marked difference compared with the Raman spectra. Both the
signs and positions of the IFM bands are beneficially diverse,
making ROA a promising tool for the identification SWCNTs
and derivatives thereof.
Maximal ROA (absolute) intensity values relative to

methyloxirane, collected in Table 2, are one or 2 orders of
magnitude larger than the same quantities for Raman. This
effect can be explained with the structure of chiral SWCNTs.
The long helical motif in the arrangement of the carbon atoms
can give a large contribution to the ROA signal, whereas the
Raman scattering is relatively indifferent to this structural
pattern. This observation is in accord with previous studies on
hexahelicene derivatives, where the increased ROA signal was
attributed to collective carbon skeleton vibrational motions of
extended helical structural elements.118,119

Similar to the Raman effect, ROA intensities also depend
strongly on the incident light frequency. The interesting new
feature of the resonance ROA profile of the (6,5) tube, depicted
in Figure 4, is the sign change for all major peaks as ω passes

through the first excitation energy. This opens a possibility to
distinguish overlapping bands (for instance in the region of the
most intense G+ mode) in a mixed sample, using a well chosen
incident light frequency. In contrast with resonance Raman
curves, enhancement originating from resonance with the 1 →
2 or 2 → 2 electronic transitions cannot be observed clearly in

Figure 3. Unpolarized backscattering ROA cross sections of selected
SWCNT at 532 nm. Spectra of panel A are normalized over the
wavenumber interval [0, 800] cm−1, panel B over [800, 1800] cm−1.
Relative normalization factor values are computed with respect to the
spectrum of (11,4). See text for further notations.

Figure 4. Resonance ROA profile of SWCNT (6,5) using the TB
approximation. The RBM intensity is scaled by a factor of 200, and G−

is multiplied by 3 to match the magnitude of G+.

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.6b04594
J. Phys. Chem. A 2016, 120, 5527−5538

5533

http://dx.doi.org/10.1021/acs.jpca.6b04594


Figure 4. The strongest ROA signal is, therefore, expected from
resonance with the first electronic transition.
In accord with our previous prediction,29 Magg et al.30

provide experimental evidence in the case of the (6,5) tube that
SWCNTs can indeed exhibit remarkably strong Raman and
ROA signals. Inspecting Table 2, the same theoretical
prediction holds for all six investigated nanotubes. (Note that
there are two differences in the computational model used for
the nanotubes and the methyloxirane spectra, the latter being
the reference in Table 2. First, it was possible to employ a much
more sophisticated computational model for methyloxirane.
Second, the comparison is made with 532 nm incident light
where resonance occurs only in the case of the nanotubes.
However, our aim was to estimate the methyloxirane spectra
with the experimentally most relevant 532 nm as well as
possible, because it is frequently measured, and to compare the
strength of the estimated nanotube ROA signal to that reliable
reference.)
On the basis of a previous analysis,29,63 we judge that Raman

and ROA cross sections obtained by the present computational
protocol are overestimated by a rough factor of 100−1000,
which mainly originates from the error of the TB model
compared to DFT. Relative ROA intensities of Table 2 are
accordingly expected to be on the order of 105−106 in practice
(in contrast to the 108−109 values suggested by Table 2). For
comparison, the same relative intensity (with respect to
methyloxirane) is just 103−104 in the case of chiral full-
erenes.29,62 The exceptionally strong ROA signal of SWCNTs
compared to the effect produced by small molecules at the
same incident light frequency can be attributed both to the
resonance enhancement and to the extended helical pattern of
the chiral nanotubes.

4. CONCLUSION AND OUTLOOK
Theoretical resonance Raman and ROA spectra of chiral
SWCNTs are reported, on the basis of the combination of
scattering tensors computed at the π-electron level with DFT
vibrational modes. Comparison with the recent experimental
ROA spectrum of the (6,5) tube30 represents further validation
of the present computational protocol, in addition to previous
assessments based on chiral fullerenes.29,62,63 The theoretical
model applied here improves upon our previous studies in the
following: (i) level shifts according to eq 24 are used to correct
for one-particle electronic energy differences; (ii) band
polarization terms are included when matrix elements of
multipole operators are computed (cf. eq 30). Periodic forms
for the magnetic dipole and the electric quadrupole operators
are introduced here (eqs 21 and 22) in analogy with the
commonly applied periodic electric dipole. Contribution of
antisymmetric invariants to Raman and ROA scattering cross
sections (cf. eqs 14 and 15) is discussed in detail.
Comparison of the theoretical spectrum for the (6,5)

nanotube with the experiment of ref 30 reveals good agreement
in terms of both sign and relative intensity for all bands, except
for the signal sign of the radial breathing mode. This
disagreement cannot be resolved on the basis of the data
available to us presently and requires further investigation.
Besides the recently measured (6,5) tube, ROA spectra of

five more chiral SWCNTs are presented. These may aid
forthcoming experiments in absolute configuration determi-
nation. Notable contribution of the fundamental intermediate
frequency modes is a common feature of computed ROA
spectra. This represents an enrichment compared to Raman

that may assist nanotube identification. On the basis of the
computations, we judge that the ROA signal of chiral SWCNTs
is at least 5−6 orders of magnitude stronger than that of
commonly measured small, organic compounds. The reason for
this is the resonance enhancement on the one hand and the
uniquely long helical arrangement of the carbon atoms of the
chiral SWCNTs on the other hand. Resonance ROA profile of
the (6,5) tube shows an interesting sign change in the region of
the first electronic excitation. This might also be exploited for
experimental identification of components of a nanotube
mixture.
The magnitude of resonance enhancement in the case of

Raman and ROA of SWCNTs is comparable. This may
motivate extension of well-developed techniques of Raman
microscopy to the field of ROA. Among other related chiral
structures, multilayer graphenes and multiwalled nanotubes can
also exhibit ROA if the mirror planes of their (achiral)
monomers are not coinciding.

■ APPENDIX A. CONNECTION OF ̂ TO MTOM
The MTOM formula for the orbital magnetization of
nonmetallic systems can be expressed with the following
matrix element of the magnetic moment:84

= − ϵ ⟨∇ | ̅ |∇ ⟩α αβγ β γ
M u H uk k r k k r( ) ( )

i
2

( , ) ( ) ( , )jj k j k j (25)

with H(k) = e−ikrHeikr and uj(k,r) denoting the periodic part of
the COs of eq 4, i.e., φj(k,r) = eikruj(k,r).
In comparison, the analogous matrix elements of the periodic

magnetic dipole operator, ̂ of eq 21, with COs reads

= − ϵ ⟨ | | ⟩α αβγ β γu p uk k r k r( ) ( )
1
2

( , )e e ( , )jj j j
kr kri i

(26)

Let us proceed with the substitution of β = ieikr∇kβe
−ikr and of

the EOM of periodic systems (eq 23) into the above magnetic
dipole formula:

= − ϵ ⟨ |∇ ∇ | ⟩

− ⟨ |∇ ∇ | ⟩

α αβγ
−

−

β γ

β γ

u H u

u H u

k k r k r

k r k r

( ) ( )
i
2

( ( , ) e e ( , )

( , ) e e ( , ) )

jj j k k j

j k k j

kr kr

kr kr

i i

i i
(27)

One can exploit the Schrödinger equation in the second term of
the right-hand side as

ε| ⟩ = | ⟩H u uk r k k re ( , ) ( ) e ( , )j j j
kr kri i

and recognize that the resulting expression cancels, because

εϵ ⟨∇ |∇ ⟩ =αβγ β γ
u uk k r k r( ) ( , ) ( , ) 0j k j k j

due to the properties of the cross product.
Finally, one finds the first term on the right-hand side of eq

27 is in complete agreement with the corresponding MTOM
expression in eq 25.

■ APPENDIX B. MATRIX ELEMENTS OF MULTIPOLE
OPERATORS

The zero differential overlap (ZDO) approximation is applied
for matrix elements of the multipole operators of section 2.3
taken with the basis functions of eq 2. Within the ZDO
approximation any multiplicative operator takes the matrix
element
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ϕ ϕ δ δ⟨ | | ′ ⟩ =μ ν μμ μν ′k A k A kr r( , ) ( , ) ( ) kk (28)

The above treatment of multipoles is consistent with the TB
model Hamiltonian.
Considering the occupied-virtual matrix element of the

electric dipole, conventional techniques120,121 lead to the result

∑

∑

ϕ ϕ= − * ̂ + ⟨ | ∂
∂

| ⟩

+ ∂
∂

= − * +

α
μ ν

μ α μν μ ν

μν ν

μ
μ α μ μ

⎡
⎣⎢
⎤
⎦⎥

d k C k r k
k

k

S k
k

C k

C k R C k U k

r r( ) ( ) ( ) ( ) i ( , ) ( , )

i ( ) ( )

( )( ) ( ) i ( )

ja j

a

j a ja

,

(29)

where Sμν(k) = δμν is the overlap matrix of the symmetry
adapted basis of eq 2, (Rα)μ is the α coordinate of atom μ in the
reference unit cell and the CO derivatives with respect to k, i.e.

∑∂
∂

=μ μ
≠k

C k U k C k( ) ( ) ( )a
p a

pa p
(30)

are determined relying on the (coupled)perturbed ap-
proach.120,121 Let us note again that this so-called band
polarization term, which depends on Uja(k), was not included
in our previous report;29 hence, the present ROA spectrum of
the (6,5) nanotube differs from the one in ref 29.
Matrix elements of the magnetic dipole operator can be

expressed with the corresponding components of the
coordinate and momentum operator after inserting the
resolution of identity in the CO basis between operators ̂
and p̂:

∑= ̂ =
ϵ

α α
αβγ

β γm k k d k p k( ) ( ) ( ) ( )
2

( ) ( )( ) ( )ja ja
q

jq qa

(31)

where the momentum matrix elements are obtained via the
periodic EOM of eq 23 as

ε ε= −γ γp k k k d k( ) ( ) i[ ( ) ( )]( ) ( )qa a q qa (32)

Analogously, the CO matrix elements of the electric quadrupole
operator read

∑

∑δ

Θ = ̂ =

−

αβ αβ α β

αβ
λ

λ λ

k k d k d k

d k d k

( ) ( ) ( ) ( )
1
2

[3( ) ( )( ) ( )

( ) ( )( ) ( )]

ja ja
s

js sa

js sa
(33)
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Optical Circular Dichroism of Single-Wall Carbon Nanotubes. Phys.
Rev. B: Condens. Matter Mater. Phys. 2006, 73, 045401.
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