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ABSTRACT

When a single molecule is connected to external electrodes by linker groups, the connectivity of the 

linkers to the molecular core can be controlled to atomic precision by appropriate chemical synthesis. 

Recently, the connectivity dependence of the electrical conductance and Seebeck coefficient of single 

molecules has been investigated both theoretically and experimentally. Here we study the connectivity 

dependence of the Wigner delay time of single-molecule junctions and the connectivity dependence of 

Page 1 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2

superconducting proximity effects, which occur when the external electrodes are replaced by 

superconductors. Although absolute values of transport properties depend on complex and often 

uncontrolled details of the coupling between the molecule and electrodes, we demonstrate that ratios of 

transport properties can be predicted using tables of ‘magic numbers,’ which capture the connectivity 

dependence of superconducting proximity effects and Wigner delay times within molecules. These 

numbers are calculated easily, without the need for large-scale computations. For normal-molecule-

superconducting junctions, we find that the electrical conductance is proportional to the fourth power of 

their magic numbers, whereas for superconducting-molecule-superconducting junctions, the critical 

current is proportional to the square of their magic numbers. For more conventional normal-molecule-

normal junctions, we demonstrate that delay time ratios can be obtained from products of magic number 

tables.

Corresponding authors: Colin Lambert: Email c.lambert@lancaster.ac.uk; Jozsef Cserti: Email  

cserti@elte.hu

1. INTRODUCTION

 During the past decade, experimental and theoretical studies of single molecules attached to metallic 

electrodes have demonstrated that room-temperature electron transport is controlled by quantum 

interference (QI) within the core of the molecule1-20.  These studies provide tremendous insight into the 

mechanisms leading to efficient charge transport, but they ignore key aspects of quantum mechanical 

phase. For example, such junctions are often described using the Landauer formula , where 𝐺 = 𝐺0𝑇(𝐸𝐹)

 is the quantum of conductance and  is the Fermi energy of the electrodes. In this expression 𝐺0 =
2𝑒2

ℎ 𝐸𝐹 𝑇

 is the transmission coefficient describing the probability that an electron of energy  can pass through (𝐸) 𝐸

the junction from one electrode to the other and for single-channel leads, is related to the transmission 
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amplitude  by  where  is a complex number of the form  . 𝑡(𝐸) 𝑇(𝐸) = |𝑡(𝐸)|2, 𝑡(𝐸) 𝑡(𝐸) = |𝑡(𝐸)|𝑒𝑖𝜃(𝐸)

Clearly the phase  of the transmission amplitude plays no role when computing , even though 𝜃(𝐸) 𝑇(𝐸) 𝑇

 is a result of interference from different transport channels within a molecular junction.(𝐸)

The aim of the present paper is to examine examples of molecular-scale transport in which phase plays 

a crucial role and to discuss aspects of molecular-scale electron transport when one or more electrodes 

are superconducting. An example of such a structure is a normal-electrode/molecule/superconducting-

electrode junction (denoted N-M-S), where the electrical conductance is proportional to the Andreev 

reflection coefficient of the junction. A second example is a molecular-scale Josephson junctions (denoted 

S-M-S’) formed by placing a single molecule between two superconducting electrodes S and S’. In this case 

the dc electrical current is driven by the phase difference between the order parameters of the two 

superconductors. A third example occurs in N-M-SS’ junctions, whose Andreev refection coefficient is an 

oscillatory function of the phase difference between the two superconducting contacts S, S’. These 

considerations are motivated by the recent interest in superconducting properties of molecular scale 

junctions21,22,23,24. Secondly, we study examples where the phase θ(E) of the transmission amplitude plays 

a crucial role in normal N-M-N junctions. In this case, the phase  is related to the Wigner delay time, 𝜃(𝐸)

which characterises the time taken for an electron to pass through a single-molecule junction formed 

from normal electrodes.

2. METHODS

To illustrate how these phase-dependent phenomena can be predicted using magic number theory, 

Figure 1 shows two examples of molecules with a graphene-like anthanthrene core, connected via triple 

bonds and pyridyl anchor groups to gold electrodes. The anthanthrene core (represented by a lattice of 6 

hexagons) of molecule 1 and the anthanthrene core of molecule 2 are connected differently to the triple 

bonds. 
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Figure 1: Examples of molecules with anthanthrene cores, connected via triple bonds and pyridyl anchor 

groups to the tips of gold electrodes, which in turn connect to crystalline gold leads (not shown). Molecule 

1 has a connectivity i-j and electrical conductance , while molecule 2 has a connectivity l-m and 𝜎𝑖𝑗

electrical conductance .𝜎𝑙𝑚

In a typical experiment using mechanically controlled break junctions or STM break junctions13-18,21, 

fluctuations and uncertainties in the coupling to normal-metallic electrodes are dealt with by measuring 

the conductance of such molecules many thousands of times and reporting the statistically-most-probable 

electrical conductance. If  is the statistically-most-probable conductance of a molecule such as 1 (see 𝜎𝑖𝑗

Figure 1), with connectivity i-j and  is the corresponding conductance of a molecule such as 2 (see 𝜎𝑙𝑚

Figure 1), with connectivity l-m, then it was recently predicted theoretically and demonstrated 

experimentally2,25,26 that for polyaromatic hydrocarbons such as anthanthrene, the statistically-most-

probable conductance ratio  is independent of the coupling to the electrodes and could be 𝜎𝑖𝑗/𝜎𝑙𝑚
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5

obtained from tables of “magic numbers.” If  ( ) is the magic number corresponding to connectivity 𝑀𝑖𝑗 𝑀𝑙𝑚

i-j (l-m), then this “magic ratio theory” predicts

𝜎𝑖𝑗

𝜎𝑙𝑚
= ( 𝑀𝑖𝑗

𝑀𝑙𝑚)
2

(1)

      From a conceptual viewpoint, magic ratio theory views the shaded regions in Fig. 1 as “compound 

electrodes”, comprising both the anchor groups and gold electrodes, and focuses attention on the 

contribution from the core alone. As discussed in28, the validity of Eq. (1) rests on the key foundational 

concepts of weak coupling, locality, connectivity, mid-gap transport, phase coherence and connectivity-

independent statistics. When these conditions apply, the complex and often uncontrolled contributions 

from electrodes and electrode-molecule coupling cancel in conductance ratios and therefore a theory of 

conductance ratios can be developed by focussing on the contribution from molecular cores alone. 

The term “weak coupling” means that the central aromatic subunit such as anthanthrene should be 

weakly coupled to the anchor groups via spacers such as acetylene, as shown in Fig. 1. Weak coupling 

means that the level broadening and the self energy of the HOMO and LUMO should be small Γ Σ 

compared with the HOMO-LUMO gap . Any corrections will then be of order  or , which 𝐸𝐻𝐿 Γ/𝐸𝐻𝐿 Σ/𝐸𝐻𝐿

means that such terms can be ignored, provided the Fermi energy lies within the gap. Clearly a central 

condition for the applicability of the Landauer formula and therefore magic-number theory is that the 

molecular junction is described by a time independent mean-field Hamiltonian. Coulomb interactions 

can be included in such a Hamiltonian, at the level of a self-consistent mean field description such as 

Hartree, Hartree-Fock or DFT.  The concept of ‘mid-gap transport’ is recognition of the fact that unless a 

molecular junction is externally gated by an electrochemical environment or an electrostatic gate, 

charge transfer between the electrodes and molecule ensures that the energy levels adjust such that the 

Fermi energy EF of the electrodes is located in the vicinity of the centre of the HOMO-LUMO gap and 
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therefore transport takes place in the co-tunnelling regime. In other words, transport is usually ‘off-

resonance’ and the energy of electrons passing through the core does not coincide with an energy level 

of the molecule. Taken together, these conditions ensure that when computing the Green’s function of 

the core, the contribution of the electrodes can be ignored. The concept of ‘phase coherence’ 

recognises that in this co-tunnelling regime, the phase of electrons is usually preserved as they pass 

through a molecule and therefore transport is controlled by QI. ‘Locality’ means that when a current 

flows through an aromatic subunit, the points of entry and exit are localised in space. For example, in 

molecule 1 (see Figure 1), the current enters at a particular atom i and exits at a particular atom j. The 

concept of ‘connectivity’ recognises that through chemical design and synthesis, spacers can be 

attached to different parts of a central subunit with atomic accuracy and therefore it is of interest to 

examine how the flow of electricity depends on the choice of connectivity to the central subunit. The 

condition of “connectivity-independent statistics” means that the statistics of the coupling between the 

anchor groups and electrodes should be independent of the coupling to the aromatic core. To be more 

precise, we note that in an experimental measurement of single-molecule conductance using for 

example a mechanically-controlled break junction, many thousands of measurements are made and a 

histogram of logarithmic conductances is constructed. This statistical variation arises from variability in 

the electrode geometry and in the binding conformaton to the electrodes of terminal atoms such as the 

nitrogens in figure 1. The assumption of “connectivity-independent statistics” means that this variability 

is the same for the two different connectivities of figure 1. When each of these conditions applies, it can 

be shown2,25,26 that in the presence of normal-metallic electrodes, the most probable electrical 

conductance corresponding to connectivity i-j is proportional to  where  is the Green’s |𝑔𝑖𝑗(𝐸F)|2 𝑔𝑖𝑗(𝐸F)

function of the isolated core alone, evaluated at the Fermi energy of the electrodes. In the absence of 

time-reversal symmetry breaking,  is a real number. Since only conductance ratios are of interest, 𝑔𝑖𝑗(𝐸F)

we define magic numbers by
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7

𝑀𝑖𝑗 = 𝐴𝑔𝑖𝑗(𝐸F) (2),

where A is an arbitrary constant of proportionality, chosen to simplify magic number tables and which 

cancels in Eq. (1). Magic ratio theory represents an important step forward, because apart from the Fermi 

energy , no information about the electrodes is required. The question we address below is how is the 𝐸F

theory modified in the presence of superconducting electrodes and how can the theory be extended to 

describe Wigner delay times?

In the presence of normal-metallic electrodes, many papers discuss the conditions for destructive 

quantum interference (DQI), for which  9,18,27,29-33. On the other hand, magic ratio theory aims to 𝑀𝑖𝑗 ≈ 0

describe constructive quantum interference (CQI), for which  may take a variety of non-zero values. If 𝑀𝑖𝑗

 is the non-interacting Hamiltonian of the core, then since , the magic number table 𝐻 𝑔(𝐸F) = (𝐸F ―𝐻) ―1

is obtained from a matrix inversion, whose size and complexity reflects the level of detail contained in . 𝐻

The quantities  were termed “magic” 2,25,26, because even a simple theory based on connectivity alone 𝑀𝑖𝑗

yields values, which are in remarkable agreement with experiment 25. For example, for molecule 1 (see 

Figure 1), the prediction was , whereas for molecule 2,  and therefore the electrical 𝑀𝑖𝑗 = ―1 𝑀𝑙𝑚 = ―9

conductance of molecule 2 was predicted to be 81 times higher than that of 1, which is close to the 

measured value of 79. This large ratio is a clear manifestation of quantum interference (QI), since such a 

change in connectivity to a classical resistive network would yield only a small change in conductance. To 

obtain the above values for  and , the Hamiltonian  was chosen to be𝑀𝑖𝑗 𝑀𝑙𝑚 𝐻

𝐻 = ( 0 𝐶
𝐶𝑡 0) (3),

where the connectivity matrix  of anthanthrene is shown in Fig. 2. In other words, each element  𝐶 𝐻𝑖𝑗

was chosen to be -1 if  are nearest neighbours or zero otherwise and since anthanthrene is represented 𝑖, 𝑗
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by the bipartite lattice in which odd numbered sites are connected to even numbered sites only,  is block 𝐻

off-diagonal. The corresponding core Green’s function evaluated at the gap centre is therefore 𝐸𝐹 = 0 

obtained from a simple matrix inversion . Since  and therefore  are block off-𝑔(0) = ― 𝐻 ―1 𝐻 ―𝐻 ―1

diagonal, this yields  where  is the magic number table of the polycyclic aromatic 𝑀 = ( 0 𝑀𝑡

𝑀 0 ) ∝ 𝑔(0), 𝑀

hydrocarbons (PAHs) core. The connectivity matrix  and off-diagonal block of the magic number table  𝐶 𝑀

for anthanthrene are shown in Figure 2b and c respectively. As noted above, for molecule 1 (see Figure 

1), with connectivity 22-9, , whereas for molecule 2, with connectivity 12-3, .𝑀22,9 = ―1 𝑀12,3 = ―9

r

b 

 c
𝑴 1 3 5 7 9 11 13 15 17 19 21

2 -1 -7 4 -4 1 -1 1 -1 1 -2 3
4 1 -3 -4 4 -1 1 -1 1 -1 2 -3
6 -1 3 -6 -4 1 -1 1 -1 1 -2 3
8 1 -3 6 -6 -1 1 -1 1 -1 2 -3

10 -1 3 -6 6 -9 -1 1 -1 1 -2 3
12 3 -9 8 -8 7 -7 -3 3 -3 6 1
14 -6 8 -6 6 -4 4 -4 -6 6 -2 -2
16 6 -8 6 -6 4 -4 4 -4 -6 2 2
18 3 1 -2 2 -3 3 -3 3 -3 -4 1
20 -2 6 -2 2 2 -2 2 -2 2 -4 -4
22 -9 7 -4 4 -1 1 -1 1 -1 2 -3

 a 

c 

Figure 2: (a) The anthanthrene cores numbering system. (b) The connectivity table . (c) The off-diagonal 𝐶

block of the magic number table corresponding to the anthanthrene lattice. In this example, equation (2) 

takes the form  .𝑀𝑖𝑗 = 10𝑔𝑖𝑗(0)

Magic number tables such as Figure 2c are extremely useful, since they facilitate the identification of 

molecules with desirable conductances for future synthesis. Conceptually, tables obtained from 
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Hamiltonians such as (3) are also of interest, since they capture the contribution from intra-core 

connectivity alone (via the matrix , comprising -1’s or zeros), while avoiding the complexities of 𝐶

chemistry. 

The fact that magic number theory predicts experimentally-measured conductance ratios for a range of 

molecules25 demonstrates that at least for PAHs measured to date, magic number theory is valid.

In what follows, the studied  molecules are chosen, because their behaviour in the presence of normal-

metal (ie gold ) contacts they exhibit a sizeable  connectivity dependence in their electrical 

conductances, as demonstrated experimentally and theoretically in ref 25. The tight binding parameters 

describing the molecular core are chosen following the philosophy in refs2,25, where the aim is to 

highlight the role of connectivity in determining the transport properties of these molecular cores. For 

this reason, the hopping integrals are set to unity and the site energies are set to zero. In other 𝛾 𝜖0 

words, the unit of energy is the hopping integral and the site energy is the energy origin. This means 

that the Hamiltonian is simply a connectivity matrix and therefore all predicted effects are a result of 

connectivity alone. Remarkably, as demonstrated in 2,25, this approach yields the experimentally-

measured conductance ratios of a range of PAHs.

In the wide band limit, the only other parameter is the coupling between the terminal sites and the 

electrodes. Our aim is to compute ratios of transport properties corresponding to different 

connectivities to the electrodes. As shown in refs 2,25, transport ratios do not depend on these couplings, 

provided they are sufficiently weak. Comparison with experiment in these refs shows that this weak-

coupling criterion is satisfied by acetylene linker groups connecting the aromatic core to pyridyl anchor 

groups, which in turn bind to electrodes, as shown in Fig. 1. 

3. ANALYTIC RESULTS
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10

For convenience, we first state our main analytic results. Details of the derivations and discussion of the 

results will be given in later sections and in the Supplementary Information. The first outcome of the study 

is that for normal-molecule-superconducting (N-M-S) junctions Eq. (1) is replaced by 

,
𝜎𝑖𝑗

𝜎𝑙𝑚
= ( 𝑀𝑖𝑗

𝑀𝑙𝑚)4
(4)

where  and  label the atoms in contact with the normal electrode, while  and  label atoms in contact 𝑖 𝑙 𝑗 𝑚

with the superconducting electrode. Equation (4) shows that ratios of electrical conductances are 

determined by the fourth power of magic numbers. The fourth power in the formula can be explained via 

the mechanism of the Andreev reflection (for further details see Sec. 4a). In the case of Josephson 

junctions formed from superconducting-normal-superconducting (S-M-S) structures, the ratio of their 

critical currents  and   corresponding to different connectivities is given by𝐼(𝑖𝑗)
𝑐 𝐼(𝑙𝑚)

𝑐

𝐼(𝑖𝑗)
𝑐

𝐼(𝑙𝑚)
𝑐

= ( 𝑀𝑖𝑗

𝑀𝑙𝑚)
2

(5)

where  and  label the atoms in contact with one superconducting  electrode, while  and  label atoms 𝑖 𝑙 𝑗 𝑚

in contact with the other superconducting electrode. For molecular-scale Andreev interferometers, where 

a molecule is attached two superconducting contacts and one normal contact (N-M-SS’), the conductance 

through the normal contact is given by the formula

,
𝜎𝑙,𝑚𝑝(𝜑𝑅 ― 𝜑𝐿)

𝜎𝑙,𝑚𝑝(0) =
𝑀𝑙𝑚

4 + 𝑀𝑙𝑝
4 + 2𝑀𝑙𝑚

2𝑀𝑙𝑝
2cos (𝜑𝑅 ― 𝜑𝐿)

(𝑀𝑙𝑚
2 + 𝑀𝑙𝑝

2)2 (6)

where  is the superconducting phase difference between the right and left superconducting 𝜑𝑅 ― 𝜑𝐿

electrodes. In equation (6),   labels the atom in contact with the normal electrode, while  (  label the 𝑙 𝑝 𝑚)

atom in contact with the superconducting electrode S.

According to equation (6) the current through the normal lead is sensitive to the phase difference 𝜑𝑅 ―

. As we shall see in Sec. 4c, this phenomenon can be understood as an interference effect between two 𝜑𝐿
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transport paths. Finally, for N-M-N junctions (see section 5), the ratio of Wigner delay times corresponding 

to connectivities  and  is 𝑖,𝑗 𝑙,𝑚

𝜏𝑖𝑗

𝜏𝑙𝑚
=

𝜏𝑖𝑖 + 𝜏𝑗𝑗

𝜏𝑙𝑙 + 𝜏𝑚𝑚
(7),

where

𝜏𝑖𝑖 = (𝑀2)𝑖𝑖 (8)

4. RESULTS FOR MOLECULAR JUNCTIONS WITH ONE OR MORE SUPERCONDUCTING ELECTRODES

In the presence of superconductivity, electron transport is controlled by both normal electron scattering 

and Andreev scattering. When the normal region between electrodes is a diffusive metal, one traditionally 

treats transport using quasi-classical equations 34. Such an approach is not appropriate for phase-coherent 

transport through molecular cores, where the arrangement of atoms within the central region is 

deterministic. Instead, one should use a scattering approach which preserves such atomic-scale details35,36 

by solving the Bogoliubov-de Gennes equation for the Green’s function of the junction37. In what follows, 

we consider proximity effects in normal-molecule-superconducting (N-M-S) junctions containing a single 

superconducting electrode, in normal-molecule-double superconducting (N-M-SS’) junctions containing 

two superconducting electrodes denoted by S and S’ and in superconducting-molecule-superconducting 

(S-M-S’) Josephson junctions containing two superconducting electrodes. In junctions containing two 

superconducting electrodes, time reversal symmetry can be broken by a finite superconducting phase 

difference  between the two superconductors S and S’. Thus, for S-M-S’ junctions, imposition of 𝜑𝑅 ― 𝜑𝐿

a superconducting phase difference  would generate a Josephson current even in the absence of 𝜑𝑅 ― 𝜑𝐿

an applied voltage38. Moreover, in (N-M-SS’) junctions the finite phase difference induces an oscillation in 

the electrical conductance as a periodic function of  39We note that the phase difference  𝜑𝑅 ― 𝜑𝐿 𝜑𝑅 ― 𝜑𝐿

can be controlled experimentally40,41, allowing the measurement of the current phase relation in S-M-S' 
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junctions or the measurement of the phase dependence of the electrical conductance in N-M-SS' 

junctions.  In what follows, all three types of junctions will be considered.

4a. N-M-S junctions

In N-M-S junctions during a single scattering process an incoming electron and an Andreev reflected 

hole passes through the molecule. Thus, the transmission amplitude, in contrast to the normal transport, 

is proportional to the square of the magic numbers. For instance, if the normal and superconducting 

electrodes are connected to sites l and m, the transmission amplitude would be proportional to 𝑡𝑙𝑚~

 (see the Supporting Information for further details). The second power of  arises from ―𝑀𝑙𝑚
2𝑒 ―𝑖𝜑 𝑀𝑙𝑚

the fact that during Andreev reflection, an electron traverses the molecule in one direction and then a 

hole traverses the molecule in the other.  The minus sign originates from the Green function elements 

related to the propagation of the reflected holes, and in addition the Andreev reflection contributes to 

the total transmission amplitude with a phase factor , where 𝜑 is the phase of the superconducting 𝑒 ―𝑖𝜑

order parameter. However, the conductance is not sensitive to the specific value of this phase factor. 

Calculating the conductance using the Landauer formula, one can indeed arrives at equation (4). To 

demonstrate the validity of equation (4) we consider the normal-molecule-superconducting junctions 

with a pyrene core, shown in Figure 3.
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13

Figure 3: Normal-pyrene-superconducting junction with normal electrode coupled to site 1’ and with 

superconducting contact at site 3. γ is the hopping amplitude between atoms, ∆ is the pairing potential in 

the superconducting contact and γc is the coupling between the molecule and the superconducting 

contacts.

In our numerical calculation we used the tight binding model to describe the non-interacting 

Hamiltonian of the molecule with hopping amplitude γ. Following the reasoning of reference42, the 

conductance can be calculated using the normal and Andreev reflection amplitudes by the formula:

𝜎𝑖𝑗 =
2𝑒2

ℎ
(𝑁 ― 𝑅0,𝑖𝑗 + 𝑅𝑎,𝑖𝑗) =

4𝑒2

ℎ 𝑅𝑎,𝑖𝑗, (9)

where  is the number of propagating electron-like channels in the normal lead,  is the normal and 𝑁 𝑅0,𝑖𝑗

 is the Andreev reflection coefficient associated with a normal lead connected to site , and with a 𝑅𝑎,𝑖𝑗 𝑖

superconducting lead connected to site  of the molecule. The second equality is valid for low biases 𝑗 𝑒𝑉 ≪

 , where ∆ is the superconducting pair potential. These reflection coefficients can be calculated via the |∆|

Green’s function theory of reference43. 

Using the numbering convention of the sites given in Figure 3, one can easily show that the magic 

numbers are non-zero only between non-primed i and primed j' sites. The magic numbers between sites 

i and j’ are shown in Table 1. We assumed that the coupling γc between the molecule and the 

superconducting contacts is weak. Then it is reasonable to take the pairing potential ∆ to be non-zero only 

in the contact. 
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 1' 2' 3' 4' 5' 6' 7' 8'

1 3 -3 1 -1 1 -1 1 2

2 3 3 -1 1 -1 1 -1 -2

3 -3 3 1 -1 1 -1 1 2

4 3 -3 5 1 -1 1 -1 -2

5 -3 3 -3 3 3 -3 3 0

6 3 -3 3 -3 3 3 -3 0

7 -3 3 -1 1 -1 1 5 -2

8 0 0 -2 2 -2 2 -2 2

Table 1: The magic numbers for pyrene. Use: See Figure 3 for the meaning of indexes i and j’. Magic 

numbers connecting two sites both labeled by a prime (or both labeled without a prime) are zero.

We calculated numerically the electrical conductances between different pairs of sites  and . The 𝑖 𝑖’

superconducting pairing potential in our calculations was |∆| = 1 meV, the hopping amplitude was γ = 2.4 

eV and coupling amplitude was γc = 0.45 γ. The onsite potential was zero at all sites. Our numerical results 

are summarized in Table 2. As one can see, our theoretical prediction in Eq. (4) is confirmed; namely the 

ratio of the calculated conductance between different sites and  agrees very well by the fourth power 𝑖 𝑖′

of magic numbers given in Table 1.
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 1' 2' 3' 4' 5' 6' 7' 8'

1 80.98 80.98 1.00 1.00 1.00 1.00 1.00 16.00

2 80.98 80.98 1.00 1.00 1.00 1.00 1.00 16.00

3 80.98 80.98 1.00 1.00 1.00 1.00 1.00 16.00

4 80.98 80.98 623.99 1.00 1.00 1.00 1.00 16.00

5 80.98 80.98 80.98 80.98 80.98 80.98 80.98 0.00

6 80.98 80.98 80.98 80.98 80.98 80.98 80.98 0.00

7 80.98 80.98 1.00 1.00 1.00 1.00 623.99 16.00

8 0.00 0.00 16.00 16.00 16.00 16.00 16.00 16.00

Table 2: The calculated conductance (in units of σ0 = 1.0375 × 10−5 e2/h) through a single pyrene molecule 

between contacting sites i and j’ calculated for γc = 0.45 γ. Conductances connecting two sites both 

labelled by a prime (or both labelled without a prime) are zero. 

Note that the values of individual conductances have no significance in table 2, since our only aim is to 

calculate conductance ratios. The conductances are determined by the arbitrary couplings to the 

electrodes, which do not affect conductance ratios. Furthermore conductance ratios are independent of 

the parameters used to define the electrodes. The above value of was chosen, because superconducting Δ 

gap of common superconductors such as niobium, tantalum and mercury is on the scale of a meV. The 

value of γ_c was chosen to ensure that the level broadening due to the contacts is small compared to the 

HOMO-LUMO gap, which is in the experimentally-relevant regime. Just as conductance ratios are 

independent of the parameters used to define the normal lead, they are also independent of the 

parameters used to define the superconducting electrode, including the size of the superconducting 

energy gap. 
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Magic number theory is a weak coupling theory and eventually, as the coupling to the electrodes 

increases, there will be a difference between magic number theory and a full tight binding calculation. To 

illustrate this point and at the same time to show that the deviation is small, we performed the same 

calculation for γc = 0.85 γ, which is larger than in the previous calculation. The results are given in Table 3. 

Note that the ratios of the calculated conductance deviate from the fourth power law of magic numbers 

given in equation (4). However, for γc < 0.85 γ the deviation from the weak coupling limit remains of order 

10 %. 

1' 2' 3' 4' 5' 6' 7' 8'

1 78.35 78.35 1.00 1.00 1.00 1.00 1.00 15.90

2 78.35 78.35 1.00 1.00 1.00 1.00 1.00 15.90

3 78.35 78.35 1.00 1.00 1.00 1.00 1.00 15.90

4 78.35 78.35 488.57 1.00 1.00 1.00 1.00 15.90

5 78.35 78.35 78.35 78.35 78.35 78.35 78.35 0.00

6 78.35 78.35 78.35 78.35 78.35 78.35 78.35 0.00

7 78.35 78.35 1.00 1.00 1.00 1.00 488.57 15.90

8 0.00 0.00 15.90 15.90 15.90 15.90 15.90 15.90

Table 3: The calculated conductance (in units of σ0 = 0.0017 e2/h) through a single pyrene molecule 

between contacting sites i and j’ calculated for γc = 0.85 γ. 

4b. S-M-S’ junctions

In mesoscopic superconductivity it is well known that in phase biased Josephson junctions, at low 

temperatures, under rather general conditions, the critical current  is inversely proportional to the 𝐼𝑐

normal state resistance of the junction44, i.e., . Therefore one may expect that in S-M-S’ junctions 𝐼𝑐~
1

𝑅𝑁
~𝜎
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the critical current  flowing between the superconducting electrodes connected to sites i and j of the 𝐼𝑖𝑗
𝑐

molecule is proportional to the transmission amplitude between these points leading to . 𝐼𝑖𝑗
 𝑐~𝑀𝑖𝑗

2

Equation (5) is a direct consequence of this relation. (A more rigorous derivation is given in the Supporting 

information.) We now demonstrate the validity of equation (5) by considering the superconducting-

normal-superconducting structure with a pyrene core shown in Figure 4. The pyrene molecule was 

described in the same way as in the case of Andreev reflection. We assumed that the pairing potential ∆ 

is finite only in the superconducting contacts indicated in the Figure 4. 

Figure 4: Superconducting-normal-superconducting structure with pyrene molecule coupled to two 

superconducting contacts at site 1’ and 3. In the figure γ is the hopping amplitude between atoms, ∆ is 

the pairing potential in the superconducting contact and γc is the coupling amplitude between the 

molecule and the superconducting contacts.

Using our numerical method presented in Ref. 45 we calculated the critical current between the different 

pairs of sites i and j’. We used a superconducting pairing potential |∆| = 1 meV, a hopping amplitude γ = 

2.4 eV and coupling amplitude γc = 0.45 γ. The onsite potential was zero at all sites. The calculated critical 

current are summarized in Table 4. Clearly our theoretical prediction in equation (5) is confirmed, namely 

the ratio of the calculated critical currents between different sites i and j’ agree very well by the squares 

of the magic numbers given in Table 1.
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 1' 2' 3' 4' 5' 6' 7' 8'

1 8.9216 8.9208 1.0000 1.0007 1.0010 1.0016 1.0019 3.9913

2 8.9239 8.9239 1.0007 1.0010 1.0009 1.0010 1.0007 3.9909

3 8.9208 8.9216 1.0019 1.0016 1.0010 1.0007 1.0000 3.9913

4 8.9154 8.9156 24.3368 1.0019 1.0007 1.0000 0.9993 3.9893

5 8.9128 8.9130 8.9156 8.9216 8.9239 8.9208 8.9154 0.0000

6 8.9130 8.9128 8.9154 8.9208 8.9239 8.9216 8.9156 0.0000

7 8.9156 8.9154 0.9993 1.0000 1.0007 1.0019 24.3368 3.9893

8 0.0000 0.0000 3.9913 3.9913 3.9909 3.9913 3.9893 3.9917

Table 4: The calculated critical current (in units of I0 = 2.2623 × 10−6 e2∆/ħ) through a single naphthalene 

molecule between contacting sites i and j′ calculated for γc = 0.45 γ. Critical currents connecting two sites 

both labelled by a prime (or both labelled without a prime) are much smaller than I0.

We performed the same calculation for larger γc. The molecular Josephson effect in the strong coupling 

limit was also studied in a recent work46. For stronger coupling, the critical current becomes much larger 

than in the weak coupling limit, which is consistent with the results of reference46. (The critical current 

increases by a factor of 104 compared to the weak coupling limit.)  The results for the critical currents are 

given in Table 5. Note that the ratio of the calculated critical currents starts to deviate from the ratios of 

the corresponding magic numbers.

 1' 2' 3' 4' 5' 6' 7' 8'

1 8.0885 8.0874 1.0000 1.0031 1.0037 1.0048 1.0034 3.8543

2 8.0916 8.0916 1.0013 1.0037 1.0035 1.0037 1.0013 3.8534
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3 8.0874 8.0885 1.0034 1.0048 1.0037 1.0031 1.0000 3.8543

4 8.0676 8.0679 18.6650 1.0034 1.0013 1.0000 0.9969 3.8440

5 8.0582 8.0584 8.0679 8.0885 8.0916 8.0874 8.0676 0.0000

6 8.0584 8.0582 8.0676 8.0874 8.0916 8.0885 8.0679 0.0000

7 8.0679 8.0676 0.9969 1.0000 1.0013 1.0034 18.6650 3.8440

8 0.0000 0.0000 3.8440 3.8543 3.8543 3.8543 3.8440 3.8557

Table 5: The calculated critical current (in units of I0 = 2.8055 × 10−2 e2∆/ħ) through a single naphthalene 

molecule between contacting sites i and i′ calculated for γc = 0.85 γ. Critical currents connecting two sites 

both labelled by a prime (or both labelled without a prime) are much smaller than I0. 

4c. N-M-SS’ junctions

We now examine the conductance of an N-M-SS’ Andreev interferometer as a function of the 

superconducting phase difference (see Figure 5) between the left and right superconducting 𝜙𝑅 ― 𝜙𝐿 

electrodes. When electrons go through the path connecting the normal and superconducting leads, the 

electronic states acquire a phase that depends on the superconducting pair potential (due to the Andreev 

reflection at the superconducting surface). For N-M-S junctions we have seen that the transmission 

amplitude related to an electron incoming from the normal electrode and reflected back as a hole is 

proportional to . In case of N-M-SS’ junctions, where there are two superconducting 𝑡𝑙𝑚~ ― 𝑀𝑙𝑚
2𝑒 ―𝑖𝜑

electrodes connected to the molecule (see Figure 5), the total transmission amplitude is a sum of the 

transmission amplitudes corresponding to the paths between the normal and the individual 

superconducting electrodes, namely , where l (m and p) labels the site of 𝑡𝑙,𝑚𝑝~ ― 𝑀𝑙𝑚
2𝑒 ―𝑖𝜑𝐿 ― 𝑀𝑙𝑝

2𝑒 ―𝑖𝜑𝑅

the molecule contacted with the normal (superconducting) electrode. Hence the conductance, as a 

function of the superconducting phase difference can be calculated as:
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𝜎𝑙,𝑚𝑝(𝜑𝑅 ― 𝜑𝐿)~|𝑀2
𝑙𝑚𝑒 ―𝑖𝜑𝐿 + 𝑀2

𝑙𝑝𝑒 ―𝑖𝜑𝑅|2 = 𝑀𝑙𝑚
4 + 𝑀𝑙𝑝

4 + 2𝑀2
𝑙𝑚𝑀2

𝑙𝑝cos (𝜑𝑅 ― 𝜑𝐿). (10)
The unknown coefficients from equation (10) can be dropped out by dividing it with the maximum of the 

conductance . Finally, one ends up with equation (6). 𝜎𝑚𝑎𝑥 = 𝜎𝑙,𝑚𝑝(0)

Figure 5: Andreev interferometer with pyrene molecule coupled to a normal electrode at site 5 and two 

superconducting contacts at site 1’ and 2’

According to Equation (10), in general the conductance at the normal electrode is expected to show a 

periodic interference pattern as a function of the phase difference between the left and right 

superconducting leads. To verify our analytic expression, we compared the predictions of equation (10) 

to numerical tight binding simulations, see Figure 6. To calculate the conductance at the normal lead 

numerically, we make use of equation (10) generalized for three-terminal systems. Consequently, the 

Green’s function, and also the normal and the Andreev reflection coefficients in equation (10) would 

depend on the phase difference  of the two superconducting contacts.𝜙𝑅 ― 𝜙𝐿
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Figure 6: The calculated conductance through the normal lead at zero Fermi energy as a function of the 

superconducting phase difference at different contact positions. The solid red line Δ𝜙 = 𝜙𝑅 ― 𝜙𝐿 

represents the analytical result of equations (6) and (10), while the blue circles indicate the results of the 

tight binding calculations. (The positions of the left and right superconducting (SL and SR) and normal (N) 

leads are indicated in each figure.) 

One can see in Figure 6 that the interference pattern strongly depends on the position of the contacts. In 

agreement with the numerical results, we found that the interference pattern can only be observed if the 

connectivity between each pair of the normal and superconducting electrodes is finite [see Figure 6(a)-
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(c)], otherwise one of the interfering paths from formula (10) would be missing. Such a situation is shown 

in Figure 6(d), where the conductance is indeed independent of the phase difference φR − φL.

5. RESULTS FOR THE WIGNER DELAY TIME IN N-M-N JUNCTIONS

The Wigner delay time function was proposed by Wigner in 1955 for a single scattering channel derived 
from a Hermitian operator based on the scattering amplitude and then generalized by Smith in 1960 to 
the multichannel scattering matrices47-49. Delay times from different molecular orbitals can be measured 
experimentally, as described in 50. More generally, within a molecular junction driven by an ac applied 
voltage, they are related to the off-diagonal elements of the admittance matrix, which describes the 
current response to such a time-varying voltage51.

Consider a scatterer, with one-dimensional leads connected to sites  and  whose transmission 𝑎 𝑏,

amplitude is . The corresponding Wigner delay time   is define by , 𝑡𝑎𝑏(𝐸) = |𝑡𝑎𝑏(𝐸)| × 𝑒𝑖𝜃𝑎𝑏(𝐸) 𝜏𝑊 𝜏𝑊 = ħ𝜏𝑎𝑏

where 

𝜏𝑎𝑏 =
 𝑑𝜃𝑎𝑏

𝑑𝐸
(11)

If the scatterer is connected to single-channel current-carrying electrodes by couplings  and , then it 𝛾𝑎 𝛾𝑏

can shown that 1

𝑡𝑎𝑏(𝐸) =  2𝑖 𝑠𝑖𝑛 𝑘 × е2𝑖𝑘 × (
𝛾𝑎 × 𝛾𝑏

𝛾 ) ×
ɡ𝑎𝑏

∆
(12)

where, if  is the Hamiltonian describing the isolated molecular core,   and𝐻 𝑔 = (𝐸 ― 𝐻) ―1

 ∆ = 1 +
𝛾𝑎

2

𝛾  𝑔𝑎𝑎 𝑒𝑖𝑘 +
 𝛾𝑏

2

𝛾 𝑔𝑏𝑏 𝑒𝑖𝑘 + 
𝛾𝑎

2 𝛾𝑏
2

𝛾2  (𝑔𝑎𝑎 𝑔𝑏𝑏 ― 𝑔𝑎𝑏𝑔𝑏𝑎) 𝑒2𝑖𝑘 (13)

In deriving this expression, the electrodes are assumed to be one-dimensional tight-binding chains, with 

nearest neighbor hopping elements , (where with a dispersion relation , which –𝛾 𝛾 > 0) 𝐸 = ―2𝛾cos 𝑘

relates the energy  of an electron travelling along the electrode to its wave vector , where . 𝐸 𝑘 0 ≤ 𝑘 ≤ 𝜋

The group velocity of such electrons within the electrodes is therefore .𝑣 =
𝑑𝐸
𝑑𝑘 = 2𝛾sin 𝑘
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In equation (13), are the couplings between molecule and the left and right electrodes respectively 𝛾𝑎, 𝛾𝑏 

and  is the element of the core Green’s function . Since we are interested in the contribution to gab 𝑎,𝑏 𝑔

the delay time from the molecular core, we shall consider the ‘wide band limit’, where  is independent of 𝑘

energy  in the energy range of interest, between the highest occupied molecular orbital (HOMO)  and 𝐸

lowest unoccupied molecular orbital (LUMO) of the scattering region formed by the molecule. When H is 

real  is real and therefore the delay time is obtained from the phase of the complex number 𝑔 ∆ = 1 + ∆1 +𝑖

. ∆2

In this expression, ,  where,  and ∆1 =  𝛼cos 𝑘 + 𝛽cos 2𝑘 ∆2 =  𝛼sin 𝑘 + 𝛽sin 2𝑘  𝛼 =   
𝛾𝑎

2

𝛾  𝑔𝑎𝑎 +
 𝛾𝑏

2

𝛾 𝑔𝑏𝑏 

.  Hence  and𝛽 =
𝛾𝑎

2 𝛾𝑏
2

𝛾2  (𝑔𝑎𝑎𝑔𝑏𝑏 ― 𝑔𝑎𝑏𝑔𝑏𝑎) 𝜃𝑎𝑏 =  ― atan (
Δ2

1 + Δ1
)

𝜏𝑎𝑏 = ― [𝛥2(1 + 𝛥1) ― 𝛥1𝛥2

(1 + 𝛥1)2 + 𝛥2
2

] =  ― [ 𝛼𝑠𝑖𝑛 𝑘 + 𝛽𝑠𝑖𝑛 2𝑘 + (𝛽𝛼 ― 𝛼𝛽)𝑠𝑖𝑛 𝑘 

(1 + 𝛼 𝑐𝑜𝑠𝑘 +  𝛽 𝑐𝑜𝑠2𝑘)2 + ( 𝛼 𝑠𝑖𝑛𝑘 +  𝛽 𝑠𝑖𝑛2𝑘)2] (14)

where a dot denoted a derivative with respect to .𝐸

As an example, consider the mathematically simple ballistic limit, where the scatterer is a linear chain 

of N sites coupled by nearest neighbor elements . In this case, by choosing , the system –𝛾 𝛾𝑎 = 𝛾𝑏 = 𝛾

reduces to a perfect linear crystal and one obtains  and , where 𝜃𝑎𝑏 = 𝑘(𝑁 + 1) +
𝜋
2 𝜏𝑎𝑏 =

(𝑁 + 1)𝑑𝑘
𝑑𝐸 =

𝑁 + 1
𝑣

 is the group velocity of a wavepacket of energy . In other words, one obtains the 𝑣 =
𝑑𝐸
𝑑𝑘 = 2𝛾sin 𝑘 𝐸

intuitive result that the delay time is the length of the scatterer divided by the group velocity. 

On the other hand, we are interested in the opposite limit of a scatterer, which is weakly coupled to the 

leads, such that  and  and transport is off-resonance, such that the energy  lies within the 
𝛾𝑎

𝛾 ≪ 1
𝛾𝑏

𝛾 ≪ 1 𝐸

HOMO-LUMO gap. (The case of on-resonance transport is discussed in appendix 1.) In this case, β ,  ≪ 𝛼

and so the delay time reduces to𝛼 ≪ 1 
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𝜏𝑎𝑏 ≈ ― 𝛼𝑠𝑖𝑛 𝑘 ≈ ― (𝑔𝑏𝑏
 𝛾𝑏

2

𝛾 + 𝑔𝑎𝑎
𝛾𝑎

2

𝛾 )sin 𝑘 (15)

This equation shows that the total delay time is a sum of independent times due to each contact.                       

𝜏𝑎𝑏 ≈ (𝜏𝑏𝑏
 𝛾𝑏

2

𝛾 + 𝜏𝑎𝑎
𝛾𝑎

2

𝛾 )sin 𝑘 (16)

where we have defined an intrinsic core delay time to be:

𝜏𝑎𝑎 = ― 𝑔𝑎𝑎 (17)

which is independent of the coupling to the leads. Since , this yields𝑔𝑎𝑎 = ∑𝑁
𝑛 = 1

[𝜓𝑎(𝑛)]2

𝐸 ― 𝜆𝑛

 (18)𝜏𝑎𝑎 = (𝑔2)𝑎𝑎 = ∑𝑁
𝑛 = 1

[𝜓𝑎(𝑛)]2  

(𝐸 ― 𝜆𝑛)2

Since the local density of states  is given by𝜌𝑎

 . 𝜌𝑎 = ( ―
1
π)𝑙𝑖𝑚𝜂→0 𝐼𝑚∑𝑁

𝑛 = 1
𝜓𝑎(𝑛)𝜓𝑏(𝑛)
𝐸 ― 𝜆𝑛 + 𝑖𝜂 = 𝜂/𝜋∑𝑁

𝑛 = 1
[𝜓𝑎(𝑛)]2  

(𝐸 ― 𝜆𝑛)2 + 𝜂2 

This demonstrates that  is proportional to the local density of states at atom  of the isolated 𝜏𝑎𝑎 𝑎

molecule.

In the case where the couplings to the leads (  and ) are identical, then the ratio of delay times 𝛾𝑎 𝛾𝑏

corresponding to connectivities  and  is𝑎,𝑏 𝑐,𝑑

𝜏𝑎𝑏

𝜏𝑐𝑑
=

𝜏𝑎𝑎 + 𝜏𝑏𝑏

𝜏𝑐𝑐 + 𝜏𝑑𝑑
(18)

This delay time ratio is a property of the core Green’s function  alone. It is interesting to note that as 𝑔

illustrated by all the above examples, in the weak coupling limit, the delay time is always positive.

Since    , where ,  is obtained from the diagonal elements of  𝜏𝑎𝑎 = ― 𝑔𝑎𝑎 𝑔 = (𝐸 ― 𝐻) ―1 𝜏𝑎𝑎 ― 𝑔 =

, which at  is proportional to , where  is the magic number table of the core.(𝐸 ― 𝐻) ―2 𝐸 = 0 𝑀2 𝑀

Page 24 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25

As examples, consider the graphene-like molecules shown in Figure 2, in which (a) represents a benzene 

ring, (b)  naphthalene, (c) anthracene, (d) tetracene, (e) pentacene (f) pyrene, (g) anthanthrene and (k) 

azulene. 

a b c

d e

f g h

Figure 7: Molecular structure of substituted: a) benzene ring, b) a naphthalene, c) anthracene, d) 4-ring, 

e) 5-ring, f)  pyrene, g) anthanthrene and h)  azulene.

For the naphthalene core shown in figure 8a, figure 8b shows the Wigner delay times in the middle of 

HOMO-LUMO gap. 

τij 1 2 3 4 5 6 7 8 9 10
1 -0.89 0.00 0.22 0.00 0.11 0.00 -0.44 0.00 0.56 0.00
2 0.00 -1.22 0.00 0.78 0.00 -0.44 0.00 0.11 0.00 0.56
3 0.22 0.00 -0.56 0.00 0.22 0.00 0.11 0.00 0.11 0.00
4 0.00 0.78 0.00 -1.22 0.00 0.56 0.00 0.11 0.00 -0.44
5 0.11 0.00 0.22 0.00 -0.89 0.00 0.56 0.00 -0.44 0.00
6 0.00 -0.44 0.00 0.56 0.00 -0.89 0.00 0.22 0.00 0.11
7 -0.44 0.00 0.11 0.00 0.56 0.00 -1.22 0.00 0.78 0.00
8 0.00 0.11 0.00 0.11 0.00 0.22 0.00 -0.56 0.00 0.22
9 0.56 0.00 0.11 0.00 -0.44 0.00 0.78 0.00 -1.22 0.00
10 0.00 0.56 0.00 -0.44 0.00 0.11 0.00 0.22 0.00 -0.89

a b
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Figure 8: a) Molecule structure of naphthalene. b) The  table of naphthalene. Note that by symmetry,  𝜏𝑎𝑏

there are only three distinct delay times.

To demonstrate how the Wigner delay times change with the number of the rings in the acene series 

a-e of Figure 7, we calculate the maximum and minimum delay times for each core as a function of the 

number of rings. For structures shown in Figure 7a-e, Figure 9 shows the maximum and minimum of the 

Wigner delay times, corresponding to the connectivities marked red and blue respectively. For example, 

in Figure 7b, for naphthalene, the maximum delay time is corresponds to atoms number 2, 4, 9, 7 and 

atoms 3 and 8 have the minimum value 

Figure 9: The maximum and minimum values of  for the acene series as a function of the number of 𝜏𝑎𝑎

rings.

Table 6 summarizes the minimum and maximum value of τ for different molecules.

Molecular heart max of τaa min of τaa

Benzene      0.75 0.75
Naphthalene      1.22 0.55
Anthracene      2.5 0.62
4_rings       3.8 0.8
5_rings      6.25 0.69
Pyrene      1.75  0.67
Anthanthrene       3.8 0.6
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Azulene      1.97 1.18
Table 6: Maximum and minimum core delay times for the molecules of figure 7.

The above behavior is clearly reflected in the local density of states of the molecules, shown in Figure 

10Figure 10.

 

Figure 10: The local density of states of the molecules shown in Figure 7.

6. DISCUSSION

To understand how superconducting proximity effects manifest themselves in molecular-scale 

junctions, one needs to reconcile the vastly different energy and length scales associated with 

superconductivity and molecular-scale transport. For the former, typical superconducting coherence 

lengths are on the scale of hundreds of nanometres and energy scales on the order of meV, whereas for 

the latter, molecular lengths are typically a few nanometres and energies on the scale of 1-5 eV. To 

investigate this question experimentally, there is also a need to identify signatures of the interplay 

between molecular-scale transport and superconductivity, which are resilient to the sample-to-sample 
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fluctuations arising from variability in the atomic-scale contacts between molecules and electrodes. In this 

article we have addressed this issue by investigating the connectivity dependence of superconducting 

proximity effects in various molecular structures connected to one or two superconducting contacts. We 

found that under certain conditions (weak coupling, locality, connectivity, mid-gap transport, phase 

coherence and connectivity-independent statistics) the electrical transport properties of the molecular 

junctions can be well described by a magic-number theory, which focusses on the connectivity between 

the individual sites of the molecules. For normal-molecule-superconducting junctions, for example, we 

find that the electrical conductance is proportional to the fourth power of their magic numbers, whereas 

for molecular Josephson junctions, the critical current is proportional to the square of their magic 

numbers. We also studied interference effects in three-terminal Andreev interferometers, where the 

interference pattern was driven by the superconducting phase difference. Our analytical predictions were 

in good agreement with the performed numerical simulations for all the studied systems.

We also investigated the connectivity dependence of Wigner delay times. At first sight, it seems 

unreasonable that the core Green’s function and corresponding magic number table can yield information 

about delay times, because in the absence of a magnetic field, the core Hamiltonian and corresponding 

Green’s function  are real, whereas delay times are associated with the phase of the 𝑔 = (𝐸 ― 𝐻) ―1

complex transmission amplitude. Nevertheless we have demonstrated that delay time ratios can be 

obtained from the core Green’s function or equivalently from the associated magic number tables. 

SUPPORTING INFORMATION

Derivation of equations (4) - (6) and calculation of the Wigner delay times for on-resonance transport .
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