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We explore the effect of mechanical strain on the electronic spectrum of patterned graphene based heterostruc-
tures. We focus on the competition of Kekulé-O type distortion favoring a trivial phase and commensurate
Kane-Mele type spin-orbit coupling generating a topological phase. We derive a simple low-energy Dirac
Hamiltonian incorporating the two gap promoting mechanisms and include terms corresponding to uniaxial
strain. The derived effective model explains previous ab initio results through a simple physical picture. We
show that while the trivial gap is sensitive to mechanical distortions, the topological gap stays resilient.
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I. INTRODUCTION

Spin orbitronics is a promising new paradigm of nanoelec-
tronics that utilizes the coupling of spin and orbital degrees
of freedom of charge carriers [1,2], enabling the nonmag-
netic control of spin currents. The exceptionally long spin
dephasing time makes graphene an ideal template material
for spintronics applications [3–6]. Kekulé type patterned bond
texture has potentially a dramatic impact on the electronic
spectrum of graphene [7–10]. Specifically Kekulé-O type
distortion scatters carriers between the two momentum space
valleys of graphene resulting in the appearance of a band gap
[9]. Mechanical distortions have also a considerable effect
on the electronic states of graphene. Recently several experi-
mental groups reported the controlled manipulation of strain
fields in graphene based heterostructures [11–16]. Andrade
and coworkers have recently studied the effect of mechanical
strain on the spectrum of Kekulé patterned samples [17]. They
showed that strain substantially influences the gap generated
due to a Kekulé-O pattern. As strain increases the gap closes
pushing the sample from an insulator to a semimetal. Cru-
cially these previous studies did not consider other gap gen-
eration mechanisms which may arise in samples compatible
with Kekulé-O texture. In our previous works we showed that
in graphene based heterostructures, utilizing ternary bismuth
tellurohalides, Kekulé distortion is accompanied by strong
induced spin-orbit interaction (SOI) [18,19]. In these struc-
tures a competition between two gap generation mechanisms
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arise. On one hand Kekulé-O texture favors a trivial band gap,
while the induced spin-orbit interaction drives a topological
Kane-Mele type gap [20]. Consequently it has been found
that mechanical distortions can drive the system from a trivial
insulator to a topological phase.

In this paper we present a simple effective low-energy
Dirac model that captures the essence of this mechanically

FIG. 1. The phase diagram of the considered model based on
Eq. (3) and the discussion below. Parameter set from the inside of
the cones depicts a trivial gap, while outside of the cones the system
is topological. The band gap is closed on the solid surfaces. Between
the gray opaque shape and the cones the gap is located at zero
momentum; everywhere else it is shifted away to a finite value.
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FIG. 2. Schematic structure of the unstrained model. The pale
gray hexagons represent the unadulterated graphene substrate. Each
pale gray bond corresponds to a hopping amplitude t . The red dashed
lines denote the Kekulé-O type bond alteration with a characteristic
strength of �. Each gray bond with a red dashed line on top
corresponds to a hopping amplitude t + �. Brown lines connecting
next-nearest neighbor sites symbolize the induced Kane-Mele type
spin-orbit coupling. Each brown line corresponds to a spin dependent
hopping amplitude im, in the direction of the arrows. For more details
see the Appendix.

controlled topological quantum phase transition. Our find-
ings are summarized in a three-dimensional phase diagram
extracted from the investigated model as depicted in Fig. 1.
Inside the cones the Kekulé distortion outpowers the spin-
orbit coupling, therefore the system is a trivial insulator,
while outside of the cones, spin-orbit coupling is dominant,
subsequently the gap is topological. Solid surfaces denote the
phase boundaries, where the gap is closed and the system is
metallic. We first introduce the low-energy Hamiltonian and
then determine the low-energy spectrum. Based on analyti-
cal properties of the spectrum we elucidate how mechanical
distortions influence the competition of the two types of gap
promoting effects. In Appendix A we give a detailed deriva-
tion of the low-energy Hamiltonian based on a tight-binding
model inspired by previous first principles calculations. In
Appendix B we outline the procedure we used to classify the
topological phases of the investigated system.

II. MODEL AND RESULTS

Let us consider the tight-binding model of a patterned
graphene lattice as depicted in Fig. 2. Each first nearest
neighbor bond carries a hopping amplitude of t . Kekulé-O

distortion is taken into account through an additional �

hopping term supplementing each bond around every third
hexagon. These terms will be responsible for opening a trivial
gap [9]. On the same hexagons the Kekulé-O distortion is ac-
tive we also introduce a next-nearest neighbor spin dependent
hopping. For spin up electrons this corresponds to a hopping
amplitude im in the direction of the bond vectors denoted
by arrows, while −im for spin down particles. This term,
adopted from the Kane-Mele model, promotes a topological
gap [20]. Also note that the considered spin-orbit coupling
preserves the z component of the spin operator, thus the up and
down spin orientations can effectively be treated separately.
Besides the considered bond texture discussed above we
also incorporate a uniaxial in-plane strain in our description.
We take into account the linear distortion of the lattice
vectors and the exponential renormalization of all hopping
terms.

Since the considered model is diagonal in the spin degree
of freedom its Z2 topological index, characterizing time rever-
sal symmetric systems, is given by the parity of the total Chern
number calculated for one spin component of the occupied
bands [21–23]. In Appendix B we briefly summarize the pro-
cedure to obtain the Chern number of the investigated system.

The following simplified low-energy Hamiltonian cap-
tures the most important aspects of the electronic structure
in the vicinity of the distorted Dirac cones of graphene
(for derivation of the model see in Appendix A):

Heff = −v[σA ⊗ τz ⊗ s0 + σk ⊗ τ0 ⊗ s0]

+ �σz ⊗ τx ⊗ s0 − mσz ⊗ τ0 ⊗ sz, (1)

where k is the momentum, v = 3acc/2t is the Fermi velocity
(in units of h̄) with acc = 1.42 Å the equilibrium carbon-
carbon bond distance [24]. The σ = (σx, σy), τi, and si are
the Pauli matrices. σi are acting on the sublattice, τi on the
valley degree of freedom while si act on the real spin. The
pseudovector potential A describes mechanical distortions,
specifically for the case of uniaxial in-plane strain its com-
ponents are [25–28]:

A = β

2acc
ε(1 + ρ)

(
cos 2θ

− sin 2θ

)
, (2)

where β ≈ 3 is the Grüneisen parameter [29–31] that modu-
lates the hopping terms of the tight-binding model as strain
changes the intercarbon distance due to lattice deformations,
ε is the magnitude of the distortion, ρ is the Poisson ratio,
estimated to be ρ ≈ 0.165 for graphene [32–34] while θ is
the angular direction of the strain with respect to the x axis.

Since Hamiltonian (1) is diagonal in the proper spin de-
gree of freedom each spin species can be treated separately.
Diagonalizing (1) yields the same spectrum for both spin
orientations:

E (k) = ±
√

ξ 2 + �2 + v2|k|2 + m2 ± 2
√

ξ 2�2 + (v2A · k)2 + �2m2, (3)

where we introduce

ξ = v
β

2acc
ε(1 + ρ). (4)
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FIG. 3. The low-energy spectrum of the considered tight-binding
model (A21), denoted by solid orange lines, and the effective Dirac
Hamiltonian (1), depicted with dashed black lines, for various pa-
rameters. Topological gaps are indicated by blue opaque coloring,
while trivial gaps are highlighted with red. In all panels m = 0.04t
and � = 0.08t unless indicated otherwise, for all cases θ = 0.

The low-energy spectrum of the considered tight-binding
model (A21) and the effective Dirac Hamiltonian (1) for
various model parameters is shown in Fig. 3. In the first
row we show a clean graphene sample under strain. As the
magnitude of the mechanical distortion increases the two
Dirac cones shift apart. In the second row a trivial gap opened
by Kekulé pattern is closed by an ever increasing strain driving
the system into a semimetallic phase. On the contrary, as it can
be observed in the third row the topological gap opened by the
Kane-Mele term is insensitive to the strength of distortion. In
the last row both gap generation mechanism are active and
� > m resulting in a trivial gap for the unstrained case. As
strain is increased the gap is closed and reopened but now
with a topological flavor.

Analyzing the spectrum, depicted in Fig. 3, the conditions
for sustaining a gap can be discerned. We find that if the
applied mechanical distortion is constrained as

2ξ 2 �
√

�2(�2 + 4m2) + �2, (5)

then the band extrema are at k = (0, 0) and the magnitude of
the gap is

EG = 2
√

ξ 2 + �2 + m2 − 2
√

ξ 2�2 + �2m2. (6)

FIG. 4. The magnitude of the gap obtained from the effective
Dirac Hamiltonian is shown as the function of uniaxial strain for
various model parameters. Red color indicates that the gap is trivial,
while blue coloring shows that the gap is topological. The dashed
line corresponds to � = 0 and m = 0.04t . The solid line shows the
case when � = 0.04t and m = 0. The dash-dotted line was obtained
using � = 0.01t and m = 0.02t while in the case of the dotted curve
it was � = 0.03t and m = 0.02t .

The gap closes if ξ = √
�2 − m2 at which point valence

and conduction band touch at a single point. If condition (5) is
unsatisfied the band extrema are shifted to a finite momentum,
the magnitude of the gap in this case is:

EG = 2m

√
1 − �2

ξ 2
. (7)

We note that the observations made above are insensitive to
the direction of strain, i.e., θ , similarly to previous results
[17,29].

The impact of strain on the competition between the two
topologically distinct phases can be observed in Fig. 4. Here
we plot the evolution of the magnitude and character of the
gap as the function of the strength of the applied mechanical
distortion based on (6) and (7). If only the Kekulé term is
active, shown with solid lines, then the gap decreases linearly
with increasing strain and once it is closed the system remains
gapless. On the other hand if we only keep the next-nearest
spin-orbit coupling, indicated by dashed lines, the gap remains
constant in the face of ever increasing strain. If � > m,
shown with dotted lines, the original trivial gap closes and
a nontrivial gap opens as strain is increased. For m > �,
denoted by a dash-dotted line, an initial smaller topological
gap is increased by the application of mechanical distortions.

III. CONCLUSION

We studied the effects of uniaxial strain upon the electronic
properties of a patterned graphene lattice hosting a Kekulé-O
textured bond alternation and a commensurate Kane-Mele
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type spin-orbit coupling. Based on a tight-binding model we
distilled an effective, low-energy Dirac Hamiltonian. Analyz-
ing the spectrum of the model we explored the various gapped
phases present in the sample. We found that while the trivial
gap favored by the Kekulé-O distortion is destroyed by the
strain, the topological gap generated by the considered spin-
orbit term remains resilient. This observation can be under-
stood from the following reasoning. The applied mechanical
distortion moves the two Dirac cones of graphene from their
initial position. The Kekulé term scatters particles between
valleys, and hence it can only open a gap if the Dirac cones
are aligned. The Kane-Mele term on the other hand does not
mix valleys and the gap opened through it is insensitive to
the position of the Dirac cones. These findings explain our
previous ab initio results [18].
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APPENDIX A

In this section, we present the derivation of our simplified
low-energy Hamiltonian [Eq. (1)]. The system of interest is
the Kekulé-O distorted graphene lattice hosting next-nearest
neighbor Kane-Mele type spin-orbit interaction in the per-
turbed hexagons (see Fig. 2). To study the impact of mechan-
ical strain on the electronic spectrum, we introduced uniform,
planar strain, id est, the strain is position independent. Thus
the displacement field of the atoms due to the deformation
is given by: u(r̃) = ε · r̃, where r̃ is the original position of
the cores. After deformation the position of the atoms are
r = r̃ + u(r̃) = (I + ε) r̃, where I is the 2 × 2 identity matrix
and the deformation tensor ε can be parametrized as:

ε = ε

(
cos2θ − ρ sin2θ (1 + ρ) cos θ sin θ

(1 + ρ) cos θ sin θ sin2θ − ρ cos2θ

)
, (A1)

where ε is the magnitude of the applied strain, θ is its angular
direction, with respect to the x axis, and ρ is the Poisson ratio,
which relates the transverse strain to the axial component
(estimated to be ρ = 0.165 for graphene).

We applied the above outlined formalism to include strain
in our model, which can be formulated as:

Ĥ =
(

ĥ↑ 0
0 ĥ↓

)
. (A2)

Since Hamiltonian (A2) is diagonal in the proper spin degree
of freedom [20] each spin species can be treated separately:

ĥ↑/↓ = ĤGr + ĤKek ± ĤSOI, (A3)

where ĤGr describes the pristine graphene, ĤKek is the Hamil-
tonian of the Kekulé distortion, and ĤSOI incorporates the
patterned next-nearest-neighbor spin-orbit interaction.

First let us consider the clean, pristine graphene. The
structure of graphene is defined by a unit cell consisting of
two equivalent atoms A and B with one π orbital per carbon
atom considered. The lattice is spanned by the lattice vectors:
ã1,2 = acc

1
2 (∓√

3, 3), where acc ≈ 1.42 Å is the unperturbed
carbon-carbon distance in the lattice. We define single particle
states situated on sublattice α = A or B as:

|α, m · a〉 = |α〉|m · a〉, (A4)

where m · a runs over the atomic positions as m · a = m1a1 +
m2a2 with m1 and m2 being integers. With this notation the
tight-binding Hamiltonian for strained graphene in real space
is given by:

ĤGr = t
∑

m

d1|B, m · a〉〈A, m · a|

+ d2|B, m · a〉〈A, m · a + a1|
+ d3|B, m · a〉〈A, m · a + a2| + H.c., (A5)

where t ≈ 2.7 eV is the hopping parameter of unstrained
graphene and the di factors describe the strain. Hence the
overlap integrals depend on the actual position of the atoms,
the effect of strain on the hopping terms can be taken into
account with the following factors [4,35,36]:

di = e−β( |δi |
acc

−1), i = 1, 2, 3, (A6)

where β is the Grüneisen parameter (estimated to be β ≈ 3 for
graphene) and δi are the bonding vectors pointing to one of the
three nearest-neighbor sites at a given r, as shown in Fig. 2,
δ̃1 = acc(0,−1), δ̃2 = acc/2(

√
3, 1), δ̃3 = acc/2(−√

3, 1).
In the next step, let us introduce the Kekulé-O distortion.

The texture of the ordering is visualized in Fig. 2. The
periodicity of the pattern differs from the pristine graphene
and can be written as: C1 = 2a1 − a2 and C2 = −a1 + 2a2.

We can formulate the Hamiltonian of the Kekulé-O texture in
real space as:

ĤKeK = �
∑

M

d2|B, M · C〉〈A, M · C + a2|

+ d1|B, M · C + a2〉〈A, M · C + a2|
+ d3|B, M · C + a2〉〈A, M · C + a2 + a1|
+ d2|B, M · C + a1〉〈A, M · C + a2 + a1|
+ d1|B, M · C + a1〉〈A, M · C + a1|
+ d3|B, M · C〉〈A, M · C + a1| + H.c., (A7)

where M · C runs over the atomic positions as M · C =
M1C1 + M2C2 with M1 and M2 being integers and � is the
strength of the Kekulé distortion. (We note that our definition
of � is different from Ref. [17]).

The last part of our model is the next-nearest neighbor spin-
orbit interaction. In order to preserve time-reversal symmetry
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we write the SOI term as im/
√

3, where m is the strength of
the interaction and has a real value. We introduced an extra
1/

√
3 factor in the magnitude of the interaction, which will be

convenient later. The real space periodicity of this term is the
same as in the case of the Kekulé texture:

ĤSOI = im√
3

∑
M

d5|B, M · C + a2〉〈B, M · C|

+ d4|B, M · C〉〈B, M · C + a1|
+ d6|B, M · C + a1〉〈B, M · C + a2|
+ d5|A, M · C + a1〉〈A, M · C + a1 + a2|
+ d4|A, M · C + a1 + a2〉〈A, M · C + a2|
+ d6|A, M · C + a2〉〈A, M · C + a1| + H.c. (A8)

The factors (d4,5,6) of the hopping terms have a different form
corresponding to the next-nearest neighbor bonding vectors:

d4 = e−β( |a1 |√
3acc

−1)
,

d5 = e−β( |a2 |√
3acc

−1)
,

d6 = e−β( |a1−a2 |√
3acc

−1)
. (A9)

In order to compute the dispersion relation we must take the
Fourier transform of our Hamiltonian (A2). We define the
transformation via the following relations [37]:

|B, m · a〉 = 1√
N

∑
k

eikm·a|B, k〉,

|A, m · a〉 = 1√
N

∑
k

eik(m·a+δ1 )|A, k〉, (A10)

where N is the number of the unit cells.
While calculating the Hamiltonian in k space is in principle

straightforward, we impart a couple of remarks. Using the
definition in Eq. (A10) we perform the Fourier transformation
of the first term in Eq. (A5).∑

m

d1|B, m · a〉〈A, m · a|

= d1

N

∑
m

∑
k′,k

eikm·ae−ik′(m·a+δ1 )|B, k〉〈A, k′|

= d1

N

∑
m

∑
k′,k

eim·a(k−k′)e−ik′δ1 |B, k〉〈A, k′|. (A11)

Examine more closely the following term:∑
m

eim·a(k−k′) =
n1∑

m1=1

n2∑
m2=1

ei(m1a1+m2a2 )�k, (A12)

where n1 · n2 = N and �k = k − k′. We rewrite the �k term
as a linear combination of the reciprocal lattice vectors:
�k = �k1 · b1 + �k2 · b2, where �ki = l

ni
with l = 0...ni −

1. Plugging this back to Eq. (A12):

∑
m

eim·a(k−k′) =
n1∑

m1=1

e2π im1�k1

n2∑
m2=1

e2π im2�k2

= n1δ�k1,0 · n2δ�k2,0, (A13)

where δi, j is the Kronecker symbol [38,39]. Applying this to
Eq. (A11) we get that∑

m

d1|B, m · a〉〈A, m · a| = d1

∑
k

e−ikδ1 |B, k〉〈A, k|. (A14)

The Fourier transformation of the terms with different
periodicity must be done in the same manner. We show the
first term of Eq. (A7) as an example:

∑
M1,M2

|B, M1C1 + M2C2〉〈A, M1C1 + M2C2 + a2|

= 1

N

∑
k,k′

∑
M1,M2

eik(M1(2a1−a2 )+M2(2a2−a1 ))|B, k〉

× e−ik′(M1(2a1−a2 )+M2(2a2−a1 )+a2 )e−ik′δ1〈A, k′|
= 1

N

∑
k,k′

∑
M1,M2

|B, k〉〈A, k′|

× e−i(k′−k)(M1(2a1−a2 )+M2(2a2−a1 ))e−ik′(

δ2︷ ︸︸ ︷
a2 + δ1). (A15)

Summing the terms that depend on Mi, we get:

N1∑
M1=1

N2∑
M2=1

e−i(k′−k)(M1(2a1−a2 )+M2(2a2−a1 )), (A16)

where N1 · N2 = N/3 is the number of the larger unit cell
respecting the periodicity of the Kekulé pattern. We can
rewrite the terms in the exponent as:

M1(2a1 − a2) + M2(2a2 − a1)

= (
a1 a2

)( 2 −1
−1 2

)(
M1

M2

)
. (A17)

We can do the same expansion in the terms of the reciprocal
lattice vectors as we did above:

(�k1 �k2)

(
b1

b2

)
(a1 a2)

(
2 −1

−1 2

)(
M1

M2

)

= 2π
(
�k1 �k2

)( 2 −1
−1 2

)(
M1

M2

)
. (A18)

If this exponent is a multiple of 2π then the value of the
expression is 1 and 0 otherwise. Which means we can translate
the question to a set of linear equations and solve it over the
integer numbers keeping in mind the fact that the �ki numbers
have a finite set similarly as before. This problem has three
different solutions: k − k′ = 0,±G, where G = 1

3 (b1 − b2) is
the so-called Kekulé wave vector [17,40]:

N1∑
M1=1

N2∑
M2=1

e−i(k′−k)(M1(2a1−a2 )+M2(2a2−a1 ))

= N

3
(δk,k′ + δk,k′±G). (A19)
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Now we can write down the Fourier transform:∑
M1,M2

|B, M1C1 + M2C2〉〈A, M1C1 + M2C2 + a2|

= 1

3

∑
k

|B, k〉〈A, k|e−ikδ2 + |B, k〉〈A, k + G|e−i(k+G)δ2

+|B, k〉〈A, k − G|e−i(k−G)δ2 . (A20)

Performing the Fourier transformation on every term in the
Eq. (A3) Hamiltonian in k space can be written as: ĥ↑/↓ =∑

k 
†
kH↑/↓(k)k with

H (k)↑/↓ =
(±� �

�† ∓�†

)
, (A21)

where


†
k = (|Bk〉 |B, k + G〉 |B, k − G〉 |A, k〉 |A, k + G〉 |A, k − G〉), (A22)

� =

⎛
⎜⎝

(
t + 2�

3

)
s(k, 0)/2 �

3 s(k, G) �
3 s(k,−G)

�
3 s(k + G,−G)

(
t + 2�

3

)
s(k + G, 0)/2 �

3 s(k + G, G)
�
3 s(k − G, G) �

3 s(k − G,−G)
(
t + 2�

3

)
s(k − G, 0)/2

⎞
⎟⎠, (A23)

� = im

3
√

3

⎛
⎜⎝

s′(k, 0) − s′∗(k, 0) s′(k, G) − s′∗(k + G,−G) s′(k,−G) − s′∗(k − G, G)

s′(k + G,−G) − s′∗(k, G) s′(k + G, 0) − s′∗(k + G, 0) s′(k + G, G) − s′∗(k − G,−G)

s′(k − G, G) − s′∗(k,−G) s′(k − G,−G) − s′∗(k + G, G) s′(k − G, 0) − s′∗(k − G, 0)

⎞
⎟⎠. (A24)

Here we introduced the following functions:

s(k, p) = d1e−ik(1+ε)δ̃1 (e−ipδ̃3 + e−ipδ̃2 )

+ d2e−ik(1+ε)δ̃2 (e−ipδ̃1 + e−ipδ̃2 )

+ d3e−ik(1+ε)δ̃3 (e−ipδ̃3 + e−ipδ̃1 ), (A25)

s′(k, p) = d4e−ik(1+ε)ã1 e−ipã1

+ d5eik(1+ε)ã2 + d6e−ik(1+ε)(ã2−ã1 )e−ipã2 . (A26)

In order to obtain the desired low-energy approximation of
the (A21) Hamiltonian we neglect the terms that correspond
to the high energy bands. The remaining four states can be
reordered in the vector of states following the convention of
Andrade et al. [17] as:

̃k =

⎛
⎜⎜⎝

−|A, k − G〉
|B, k − G〉
|B, k + G〉
|A, k + G〉

⎞
⎟⎟⎠. (A27)

Strain alters the hopping energies as it was introduced in
Eqs. (A6) and (A9). We expand the corresponding factors up
to the first order in strain:

di ≈ 1 − β

(
|(ε + I)δ̃i|

acc
− 1

)

= 1 − β

⎛
⎝

√(
εδ̃i + δ̃i

)T(
εδ̃i + δ̃i

)
acc

− 1

⎞
⎠

≈ 1 − β

a2
cc

δ̃
T
i εδ̃i. (A28)

Next we proceed to expand (A21) up to first order in k.
To this end we can make an expansion of s and s′ functions
around G. However, as other works already have shown, it is
necessary to expand around the true Dirac points, which are
defined as the zeros of the deformed lattice energy dispersion

[17,29,32,41]. Generally these are located neither at the high-
symmetry points of the strained lattice nor at the tips of the
original Dirac cones. These new k points are given by K =
±(G + A). The components of the pseudovector-potential A
can be expressed with the matrix element of ε such as [42]:

Ax = β

2acc
(εxx − εyy),

Ay = − β

2acc
(2εxy). (A29)

Applying these approximations to our Hamiltonian (A21)
after some straightforward but slightly tedious algebra we get
the following low-energy Hamiltonian:

Hlow-energy(k)

= −3

2
acc

(
t + 2�

3

)
× [σA ⊗ τz + σ(1 + (1 − β )ε)k ⊗ τ0]

− �

2

[
(βTr(ε) − 2)σz ⊗ τx

− a2
cc(A × k)zσ0 ⊗ τy + a2

ccAkσ0 ⊗ τx
]

+ m

2

[
Akσz ⊗ τz −

(
β

2
Tr(ε) − 1 + 3Ak

)
σ0 ⊗ τz

]

+ m

[
A + k +

(
1 − β

2

)
εk − β

4
Sp(ε)k

]
σx ⊗ τ′,

(A30)

where τ′ = (τx,−τy ). This formula can be significantly sim-
plified if only small perturbations in m and � are considered
keeping only the linear terms in m, �, and k and neglecting
all the multilinear contributions. With the inclusion of the spin
degree of freedom our effective Hamiltonian reads:

Heff = −v[σA ⊗ τz + σk ⊗ τ0] ⊗ s0

+� · σz ⊗ τx ⊗ s0 − m · σz ⊗ τ0 ⊗ sz, (A31)

235146-6



COMPETITION OF TOPOLOGICAL AND TOPOLOGICALLY … PHYSICAL REVIEW B 101, 235146 (2020)

FIG. 5. Discretization of the Brillouin zone spanned by recipro-
cal lattice vectors b1 and b2. Each vertex denoted by a black dot and
labeled by indecies (n, m) is associated to a plaquette. The Berry flux,
F ( j)

nm , is calculated for each band on each plaquette. White dots depict
vertices whose plaquettes are located in the adjacent Brillouin zone.

which is equivalent to our simplified effective Hamiltonian in
Sec. II at Eq. (1).

APPENDIX B

In this section we outline the calculation of the topological
invariant of the investigated system. As the considered spin-
orbit coupling preserves the z component of the spin the Z2

invariant, characterizing time reversal invariant models, can
be obtained from the parity of the total Chern number of the
occupied band calculated for one of the spin species [21,23].

Consider a discretization of the Brillouin zone depicted
in Fig. 5. Assuming that the Brillouin is spanned by lattice
vectors b1 and b2 we introduce sampling points labeled by
(p, q) corresponding to wave numbers k = pb1

N + qb2

N with N
being a positive integer and p, q ∈ [0, . . . , N − 1]. In Fig. 5
these points are depicted by black dots. For each vertex (p, q)
we denote the jth eigenstate of the system by | j; (p, q)〉. For
each vertex (p, q) we associate a plaquette. Assuming that
the spectrum of the system is nondegenerate over the entire
Brillouin zone the Chern number Q( j) for the jth occupied
band is the sum of Berry fluxes F ( j)

pq for each plaquette

Q( j) = 1

2π

∑
pq

F ( j)
pq . (B1)

The Berry fluxes F ( j)
pq are in turn determined by the four phase

angles

γ
( j)
p,q;p′,q′ = −arg(〈 j; (p, q)| j; (p′, q′)〉), (B2)

defined on the edge bonds, denoted by red arrows in Fig. 5,

FIG. 6. Calculated Chern numbers and the distribution of the
Berry flux over the Brillouin zone in the absence of strain for the
three occupied bands for topological and trivial phases.

corresponding to the given plaquette:

F ( j)
pq = −arg

(
exp

(
−i

[
γ

( j)
p,q;p+1,q + γ

( j)
p+1,q;p+1,q+1

+γ
( j)
p+1,q+1;p,q+1 + γ

( j)
p,q+1;p,q

]))
. (B3)

Assuming that the spectrum of the system is nondegenerate
the Chern number for a given band is obtained by the sum of
the Berry fluxes for each plaquette in the Brillouin zone. The
total Chern number Q is the sum of the Chern numbers Q( j) of
the occupied bands while the parity of Q gives the topological
invariant for the system investigated in the present paper.
Even/odd Chern numbers correspond to a trivial/topological
phase.

As an illustration of the procedure we apply it to H (k)
defined in (A21). First we note that the real periodicity of
our model is dictated by the periodicity of the modulation
characterized by the real space vectors C1 and C2 we shall
denote the corresponding reciprocal lattice vectors by bC

1
and bC

2 . In Fig. 6 we depict the calculated Berry fluxes and
Chern numbers of the three lower bands, we considered as
occupied, for a topological and for a trivial case. As one can
observe already a modest N = 4 discretization yields the right
topological character for the investigated system.
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