### Macromolecules Transmembrane proteins

**Csaba Magyar, Institute of Enzymology, Research Centre for Natural Sciences 2019 December** 

#### **Phospholipid bilayer** Extracellular Phospholipid bilayer Liposome Intracellular Hydrophobic tail Hydrophilic head Micelle OEP Phosphate ophilic Intracellular CH-CH CH. Glycero =00=0 Saturated fatty acid Extracellular **Bilayer sheet** Unsaturated fatty acid

Separation Polarity

## **Function of lipid bilayers**



### **Transmembrane proteins**

- Lipid bilayer is impermeable to most molecules
- Gates are needed TM proteins
  - Transport Signal transduction Energy conversion

### Transport



### **Signal transduction**





### Photosynthesis



### Mitochondrium

### Krebs cycle, aerobic respiration



### Occurence

- Bacteria 1-2% of genome
- Eukaryotes ~25%
  - important drug targets; 134 GPCR targets
  - at least 35% of all drug targets are GPCRs
- PDB: 2%; uderrepresented; hard to crystallize

### Structure

Alpha

Beta
 Structure is needed
 to understand
 their function









## Topography

Position of TM regions

### Size of TM regions 30 Å ~ 20-25 aa

Distance from Hydrocarbon Center (Å)





## Topology

Localization



### **TM** sequences

- Hydrophobic residues, low complexity
- Stucture is stabilized with internal H-bond
- Positive inside rule
- Ampiphatic helices; anchors
- Proline is a helix breaker, but present in TM helices missing amide hydrogen - > partial charge important for function; ion transport





### **PDBTM** database

#### PDBTM version: 2019-03-15

Number of transmembrane proteins: 4115 (alpha: 3662, beta: 429)



### PDBTM

#### Welcome to the PDBTM home page

**PDBTM: Protein Data Bank of Transmembrane Proteins** 

PDBTM is the first comprehensive and up-to-date transmembrane protein selection of the Protein Data Bank (PDB). PDBTM database is maintained at the Institute of Enzymology by the Membrane Protein Bioinformatics Research Group. The PDBTM database was created by scanning all PDB entries with the TMDET algorithm. You can get more information about PDBTM in our articles and in the PDBTM manual. If you find PDBTM useful in your research, please cite our articles (Bioinformatics 20, 2964-2972; Nucleic Acids Research 33 Database Issue, D275-D278; Nucleic Acids Research 41 Database Issue, D524-D529 ).



all

6m96

PDBTM type: Tm\_Alpha Chain(s): A[4], B[4], C[4], D[4], E[4], F[4]



### Globular folds < 10k

#### Large sizes, but small variations

### 90% of TM proteins belong to < 500 folds



### TMDET



### OPM

| orientations of                                                                                                              | (OPM) database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INIVERSITY OF MICHIGAN   COLLEGE OF PHARMACY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOMIZE GROUP |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| proteins in <b>M</b>                                                                                                         | embranes <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Search proteins by PDB ID or name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | search       |
| HOME ABOUT OPM                                                                                                               | SEARCH DOWNLOAD OPM FILES CONTACT US PPM SERVER TMPFOLD SERVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| Protein Classification                                                                                                       | Orientations of Proteins in Membranes (OPM) database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| Types (3)<br>Classes (11)<br>Superfamilies (504)<br>Families (976)<br>Species (854)<br>Localizations (24)<br>Proteins (4739) | OPM provides spatial arrangements of membrane proteins with respect to the hydrocarbon core of the lipid bilayer.<br>OPM includes all unique experimental structures of transmembrane proteins and some peripheral proteins and membrane-active peptides (Features).<br>Each protein is positioned in a lipid bilayer of adjustable thickness by minimizing its transfer energy from water to the membrane (Methods).<br>OPM provides structural classification and sorting according to different criteria (Classification).<br>Our calculations are in agreement with experimental studies of 24 transmembrane and 39 peripheral peptides and proteins.<br>OPM also provides a few preliminary results of our computational analysis of transmembrane ar-helix association in experimental structures of selected polytopic proteins (Assembly<br>pages).                                                                                                              | y Line and the second sec |              |
| Assembly                                                                                                                     | For more information on single-spanning transmembrane proteins please see our Membranome database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| Superfamilies (9)<br>Families (19)                                                                                           | In citing the Orientations of Proteins in Membranes (OPM) database please refer to<br>Lomize MA, Pogozheva ID, Joo H., Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40 (Database issue), D370-<br>D376. PDF PubMed 🖗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Porin B (PorB), different strain<br>pdb-3wi4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| Localizations (8)<br>Assemblies (207)                                                                                        | For an explanation of our method please refer to<br>Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI (2006) Positioning of proteins in membranes: A computational approach. Protein Science. 15, 1318-1333. PDF PubMed 🕏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Download File: 3wi4.pdb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| Protein Links                                                                                                                | For a new version of our method please refer to<br>Lomize AL, Pogozheva ID, Mosberg HI (2011) Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes. J Chem Inf Model. 51,<br>930-946. DPI EPDF (supplementary) PubMed if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| PDB Sum ඕ, PDB ඕ, MPKS ඕ,<br>MPDB ඕ                                                                                          | For more information on peripheral proteins please refer to<br>Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI (2007) The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct Biol. 7, 44. PDF PubMed 🖗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| PPM Server                                                                                                                   | Structure Statistics (distinct protein structures/PDB entries)         Type: Transmembrane - (2579/5883)         Class: Alpha-helical polytopic - (1850/4069)         Class: Bitopic proteins - (442/1308)         Class: Bitopic proteins - (442/1308)         Class: Bitopic proteins - (442/1308)         Class: Bita-barrel transmembrane - (287/506)         Type: Monotopic/peripheral - (131/34986)         Class: All alpha monotopic/peripheral - (320/1207)         Class: All beta monotopic/peripheral - (572/1846)         Class: Alpha / Beta monotopic/peripheral - (532/1846)         Class: Alpha + Beta monotopic/peripheral - (338/1304)         Class: Alpha + Beta monotopic/peripheral - (283/629)         Type: Peptides - (647/1159)         Class: Beta-hairpin peptides - (125/229)         Class: Beta-hairpin peptides - (125/229)         Class: Beta-hairpin peptides - (17/36)         Class: Peptides of nonregular structure - (57/107) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |

### **Experimental methods**

- Immuno localization; antibodies
- Glycosylation sites
- Reporter enzyme fusion; GFP

### Data collected in TOPDB



### TOPDB



#### Topology Data Bank of Transmembrane Proteins Topology, Structure and Prediction.

Quick search:

tabase revision: (4190 entries, 75211 topology data)

| Menu                                                                                                                |                                               | TODE                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Home                                                                                                                |                                               | TOPL                                                                                                                       |
| Documents                                                                                                           |                                               | About TOPDB                                                                                                                |
| Download                                                                                                            |                                               | The Topology Data Ba                                                                                                       |
| Search                                                                                                              |                                               | comprehensive collect                                                                                                      |
| Statistics                                                                                                          |                                               | topology information. I                                                                                                    |
| Contact                                                                                                             |                                               | from the literature and                                                                                                    |
| Related servers                                                                                                     |                                               | The database collects                                                                                                      |
| Database state                                                                                                      | us                                            | literature-derived data,<br>Bank (PDB) and from                                                                            |
| Revision date:                                                                                                      | 01/01/70                                      | TMDET algorithm.                                                                                                           |
| Entries:                                                                                                            | 4190                                          | , i i i i i i i i i i i i i i i i i i i                                                                                    |
|                                                                                                                     |                                               | M/bile literature deriver                                                                                                  |
| Topology data:                                                                                                      | 75211                                         | while illerature-derived                                                                                                   |
| Topology data:<br>Alpha helical proteins:                                                                           | 75211<br>4067                                 | semi-automatic and co                                                                                                      |
| Topology data:<br>Alpha helical proteins:<br>Beta barrel proteins:                                                  | 75211<br>4067<br>123                          | semi-automatic and co<br>reliable information a                                                                            |
| Topology data:<br>Alpha helical proteins:<br>Beta barrel proteins:<br>PubMed links:                                 | 75211<br>4067<br>123<br>4270                  | semi-automatic and co<br>reliable information a<br>incomplete. Therefore,                                                  |
| Topology data:<br>Alpha helical proteins:<br>Beta barrel proteins:<br>PubMed links:<br>PDB links:                   | 75211<br>4067<br>123<br>4270<br>12816         | semi-automatic and co<br>reliable information a<br>incomplete. Therefore,<br>the collected experir                         |
| Topology data:<br>Alpha helical proteins:<br>Beta barrel proteins:<br>PubMed links:<br>PDB links:<br>UniProt links: | 75211<br>4067<br>123<br>4270<br>12816<br>4190 | semi-automatic and co<br>reliable information a<br>incomplete. Therefore,<br>the collected experin<br>transmembrane topolo |

#### TOPDB: Topology Database of Transmembrane Proteins

The Topology Data Bank of Transmembrane Proteins (TOPDB) is currently the most complete and comprehensive collection of transmembrane protein datasets containing experimentally derived opology information. It contains records for 4190 transmembrane proteins with information gathered rom the literature and from public databases available on the World Wide Web.

The database collects the details of various experiments carried out to learn about the topology of particular transmembrane proteins. The experimental techniques include fusion with reporter enzymes, glycolysation studies, protease accessibility, immunolocalisation, etc. In addition to iterature-derived data, an extensive collection of structural data was also compiled from Protein Data Bank (PDB) and from Protein Data Bank of Transmembrane Proteins (PDBTM) by utilising the TMDET algorithm.

While literature-derived data can not be collected automatically, data based on 3D structures provides semi-automatic and continuously updated information for the database. Structural data is the most eliable information about transmembrane topologies, but the topology information is often ncomplete. Therefore, for each protein in the database the most probable topology consistent with he collected experimental constraints was also calculated using CCTOP and HIMMTOP ransmembrane topology prediction algorithms for  $\alpha$ -helical and  $\beta$ -barrel transmembrane proteins, espectively.

Each record in TOPDB also contains the indispensable information about the given protein such as its sequence, name, organism and cross references to various databases (PDB, PDBTM, UniProt and literature references from PubMed).

This web interface of TOPDB includes tools for extensive searching, relational querying and data browsing as well as visualisation tools for topology data.

The TOPDB is designed to address the broad gap between the large number of transmembrane proteins in sequence databases and the publicly available topology information of experimentally or computationally studied transmembrane proteins.

### Methods use for TM proteins

- Signal peptide identification
- Differentiate TM and globular sequences (DAS-TMfilter)
- Topology prediction (HMMTOP)
- Fold recognition (TOPDOM)
- Homology modelling
- Membrane positioning (TMDET, OPM)

### TOPDOM



#### TOPDOM: Conservatively Located Domains and Motifs in Proteins

Home Documents Download Search Related sites

#### **TOPDOM** is

a collection of domains and sequence motifs located conservatively in one side of membranes either in transmembrane or globular proteins. The database was created by predicting the transmembrane status and topology of all protein sequence in **UniProt** database by the **CCTOP** algorithm and scanning by specific domain or motif detecting algorithms. The identified domain or motif was added to the database if it was uniformly annotated in the same side of the membrane of the various proteins in **UniProt** database. The sequences in the **UniProt** database were scanned by using hmmpfam algorithm with **Pfam** and **Smart** domain databases, prosite scan with **Prosite** motif database and fingerprints algorithm with **Prints** database. For further details refer to our **manuscripts**.

#### TOPDOM can be

**downloaded** either the whole database or various subset of the database in XML format. The database can be searched by **keywords** or **identifiers**. Moreover, users can **scan** their protein sequences against the TOPDOM domains and motifs.

#### Constrained prediction

can be performed after sequence **scanning** by the **CCTOP** transmembrane topology prediction algorithm using the search results as constrains.

| Statistics   |         |
|--------------|---------|
|              |         |
| Visitors     | 444186  |
| Entries      | 6232    |
| Pfam         | 3930    |
| Prints       | 589     |
| Prosite      | 1375    |
| Smart        | 338     |
| UniProt      | 195371  |
| Inside       | 444(    |
| Outside      | 1792    |
| Transmem     | 1331    |
| Search by sq | 1109268 |
| Search by kw | 5679    |
| Search by id | 12422   |
|              |         |

## **Topology prediction**

- Structure determination if difficult
- Prediction methods are needed Machine learning Neural networks Hidden Markov model Support Vector Machine

### HMMTOP

### Hypothesis: the topology is determined by the difference in the amino acid distributions.

### o->h->i->h->o hidden Markov model



The most likely topology is the one that maximizes this difference.

### **Incorporation of experimental data**

| Home | Documentation                 | Help  | Download      | Advanced       | Submit              |
|------|-------------------------------|-------|---------------|----------------|---------------------|
| 「    |                               |       |               | Copyright () ( | ). E. Tusnády, 2001 |
| Ź    |                               | M     | TOP           | 0              | a (2                |
| JU.  | Prediction of ti<br>and topol |       |               | elices         |                     |
|      | by G                          | E. Tu | 2.0<br>csnády |                | U                   |
|      |                               |       |               |                |                     |

| Home | Documentation                         | Help       | Download        | Advanced    | Submit              |
|------|---------------------------------------|------------|-----------------|-------------|---------------------|
|      |                                       |            |                 | Copyright 🔘 | G. E. Tusnády, 2001 |
| ١    | /our sequence(s):                     |            |                 |             |                     |
|      |                                       |            |                 |             |                     |
|      |                                       |            |                 |             | .41                 |
| S    | Sequence Format: (he)                 | <b>e</b> ) | Unformatted     |             |                     |
| s    | Sequence type: ( <u>telp</u> )        |            | Single Sequence | ce(s) ▼     |                     |
| F    | Prediction type: (help)               |            | Reliable 🔻      |             |                     |
| L    | .ocalization of sequen part(s) (help) | ice        |                 |             |                     |
| , c  | Output format: (help)                 |            | HTML 🔻          |             |                     |
| F    | Results in one line: (he              | (e)        |                 |             |                     |
|      | Submit                                |            |                 | Clear       |                     |

### ССТОР



# Constrained Consensus TOPology prediction server





| 1                 |            |
|-------------------|------------|
| Visitors:         | 1206895    |
| Prediction count: | 67769      |
| Server version:   | s.1.00     |
| Last changed:     | 13.07.2017 |
|                   |            |

### Welcome to the Constrained Consensus TOPology prediction server.

Given the amino acid sequence of a putative  $\alpha$ -helical transmembrane protein, CCTOP predicts its topology i.e. localization of membrane spanning regions and orientation of segments between them. The prediction is a consensus of 10 different methods enchanced with available structural and experimental information of any homologous proteins in the TOPDB database. CCTOP was tested on a benchmark set containing 170 proteins with known structure and achieved the highest accuracy among state-of-art and consensus methods.

You can find more information how CCTOP works in the description or in the article. A short description about the server can be found in the manual.

You can submit protein sequences here.

### **Other methods**

- DAS Prediction of transmembrane regions in prokaryotes using the Dense Alignment Surface method (Stockholm University)
- MemBrain Transmembrane protein structure prediction (HongBin Lab)
- Memsat Membrane Helix Prediction (University College London)
- Octopus Prediction of membrane protein topology and signal peptides (Stockholm University)
- Philius Transmembrane Topology Prediction Server (Yeast Resource Center)
- Phobius A combined transmembrane topology and signal peptide predictor (University of Copenhagen)
- PredictProtein Prediction of transmembrane helix location and topology (Columbia University)
- Pro and Prodiv Alpha-helical transmembrane protein topology prediction methods utilizing hidden Markov models and evolutionary information (Stockholm University)
- SignalP Predicts the presence and location of signal peptide cleavage sites (Technical University of Denmark)
- Scampi Prediction of membrane protein topology from first principles (Stockholm University)
- SOSUI Prediction of transmembrane regions (Nagoya University, Japan)
- TMHMM Prediction of transmembrane helices in proteins (CBS; Denmark)
- TMpred Prediction of transmembrane regions and protein orientation (EMBnet-CH)
- TopPred Topology prediction of membrane proteins (France)

### **Dense Alignment Surface method (DAS)**

Hydrophobic TM helices are similar to each other



### **DAS-TMfilter**



### **Intrinsically Disordered Proteins**

- Exception to the Anfinsen dogma
- IDP ~ IUP
- lack of stable (steady) 3D structure
- highly dynamics structures
- usually many interaction partners
- different amino acid composition usually with low complexity



### Cellular tumor antigene p53

regulator of the cell cycle and apoptosis



### **Experimental validation**

- Lack of secondary structure; CD spectroscopy
- Lack of X-ray electron density
- Radius of gyration



### **DisProt database**

ک DisProt Browse Release notes Download Help About المعالي المعامة المعامة المعامة المعامة المعامة المعامة الم



#### Intrinsically disordered proteins

DisProt is a database of intrinsically disordered proteins. Disordered regions are manually curated from literature. DisProt annotations cover both structural and functional aspects of disorder detected by specific experimental methods. Annotation concepts and detection methods are encoded in the Disorder Ontology. Read more about DisProt

Search DisProt...

Search

Login Feedback

|                       | Search in DisProt                             | t                                                                |                                    |                                 | Search              |                 |                  |
|-----------------------|-----------------------------------------------|------------------------------------------------------------------|------------------------------------|---------------------------------|---------------------|-----------------|------------------|
|                       | Example 1 Examp                               | ole 2                                                            |                                    |                                 |                     |                 |                  |
| Proteins per organism | n                                             |                                                                  |                                    |                                 | Statistics          |                 |                  |
| *                     | 5                                             |                                                                  |                                    | ್ಷನ್ನೇ                          |                     | Total           | Not<br>ambiguous |
| I                     |                                               |                                                                  | ્ર્ય ૮૦                            | వ్యాస                           | Proteins            | 1.6k            | 1.4k             |
| H saniens: 578        | M musculus: 88                                | R porvegicus: 50                                                 | S cerevisiae: 128                  | Viruses: 126                    | Regions             | 3.5k            | 3k               |
| n. suptens. 576       | ri. muscutus. oo                              | n. norvegicus. 50                                                | 5. CE/EVISICE. 120                 | Viluses. 120                    | Disorder content    | 104.1k<br>19.7% | 141.4k           |
| (A)                   |                                               | ☀                                                                | S                                  | $\langle \gamma \gamma \rangle$ |                     |                 |                  |
| E. coli: 7            | A. thaliana: 33                               | D. melanogaster: 30                                              | C. elegans: 13                     | Fungi: 156                      |                     |                 |                  |
| ıfo                   |                                               |                                                                  |                                    |                                 | Integrated resource | 25              |                  |
| How                   | to cite Hatos A et al. Di<br>Nucleic Acids Re | isProt: intrinsic protein disorder a<br>s., 2019. [NAR] [PubMed] | nnotation in 2020                  |                                 | UniProt             | АТН             | Pfam             |
|                       | Piovesan D et al<br>Nucleic Acids Re          | . DisProt 7.0: a major update of tl<br>s., 2016. [NAR] [PubMed]  | ne database of disordered proteins | 5                               | 🤶 Europe Pl         | BITE            | M                |
|                       | API REST API docum                            | entation here                                                    |                                    |                                 |                     |                 |                  |

### Order / disorder promoting residues

| Scalo      | Order-promoting amino acid residues |        |        |        |        |        |        |        |        |        |  |
|------------|-------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| Scale      | W                                   | F      | Y      | Ι      | М      | L      | v      | Ν      | С      | Т      |  |
| Top-IDP    | -0.884                              | -0.697 | -0.510 | -0.486 | -0.397 | -0.326 | -0.121 | 0.007  | 0.02   | 0.059  |  |
| B-value    | 0.938                               | 0.934  | 0.981  | 0.977  | 0.963  | 0.982  | 0.968  | 1.022  | 0.939  | 0.998  |  |
| FoldUnfold | 28.48                               | 27.18  | 25.93  | 25.71  | 24.82  | 25.36  | 23.93  | 18.49  | 23.52  | 19.81  |  |
| DisProt    | -0.465                              | -0.381 | -0.427 | -0393  | 0.197  | -0.260 | -0.302 | -0.106 | -0.546 | -0.116 |  |

| Seele      | Disorder-promoting amino acid residues |       |       |       |        |       |       |       |       |       |  |
|------------|----------------------------------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|--|
| Scale      | Α                                      | G     | R     | D     | н      | Q     | K     | s     | E     | Р     |  |
| Top-IDP    | 0.06                                   | 0.166 | 0.180 | 0.192 | 0.303  | 0.318 | 0.586 | 0.341 | 0.736 | 0.987 |  |
| B-value    | 0.994                                  | 1.018 | 1.026 | 1.022 | 0.967  | 1.041 | 1.029 | 1.025 | 1.052 | 1.050 |  |
| FoldUnfold | 19.89                                  | 17.11 | 21.03 | 17.41 | 21.72  | 19.23 | 18.19 | 17.67 | 17.46 | 17.43 |  |
| DisProt    | 0.042                                  | 0.095 | 0.211 | 0.127 | -0.127 | 0.381 | 0.370 | 0.201 | 0.469 | 0.419 |  |

### **Residue frequency**



unfoldability by TOP-IDP scale — increasing

### **Dentin sialophosphoprotein**

#### Calcium binding, mineralizatrion of dentin

## **SLiMs: Short Linear Motifs**

protein sequences mediating protein-protein interactions

linear, no real 3D structure

#### **MoRFs**

Molecular Recognition Features motif-like peptides in disordered regions disordered -> ordered

### **Molecular Recognition Features (MoRFs)**





### **Eukaryotic Linear Motif resource**

| Accession  | Acc. Gene-, Name          | Start | End | Subsequence                         | Logic |
|------------|---------------------------|-------|-----|-------------------------------------|-------|
| ELMI001563 | Q14114 LRP8<br>LRP8_HUMAN | 860   | 867 | KNTKSM <mark>NFDNPVYR</mark> KTTEEE | TP    |
| Accession  | Acc. Gene-, Name          | Start | End | Subsequence                         | Logic |
| ELMI001104 | Q14118 DAG1<br>DAG1_HUMAN | 889   | 892 | KGSRPKNMTPYRS <mark>PPPY</mark> VPP | TP    |





### **Prediction of disorder**

- Physics based approach
  - IUPred
- Machine learning
  - PONDR VSL2
  - DISOPRED3
  - Spritz
  - Metaservers

## The IUPred method

- Physics based approach using statistical pairwise potentials based on globular proteins
- transform observed frequencies of amino acid pair interactions into energy-like functions based on the Boltzmann statistics
- Idea: if the neighbour residues do not contribute to a low energy, no order structure is



A – 7.67%

C – 2.43% D – 4.92 %

## Output



### Anchor

- Prediction of disordered binding sites in globular proteins
- If the calculated energy if more favourable in a globular environment → binding site

>sp|P04637|P53\_HUMAN Cellular tumor antigen p53 OS=Homo sapiens GN=TP53 PE=1 SV=4





## **Mutual Folding Induced by Binding**

| Mutual Folding<br>Induced by Bindir                                                                                            | Ŋ                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                    | N N                                                             |                                                                |            | <b>IRB</b> |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|------------|------------|
| Home                                                                                                                           | Browser                                                                                                                                                                                                                                       | ProteinMap                                                                                                                                                                                                                                                                         | Search                                                          | Downloads                                                      | Statistics | Help       |
| General Information<br>Function and Biology<br>Structure Summary<br>• Chain A<br>• Chain B<br>Evidence<br>Related Structure(s) | General Information<br>Database accession: MI<br>Name: Arc repressor<br>PDB ID: 1arq PDB<br>Experimental method:<br>Assembly: homodimer<br>Source organism: Enter<br>Primer publication of th<br>Bonvin AM, Vis H, D                          | <sup>7</sup> 2140001<br>NMR<br>robacteria phage P22<br><b>ne structure:</b><br>B <b>reg JN. Burgering MJ. Boe</b> l                                                                                                                                                                | ens R. Kaptein R                                                |                                                                |            |            |
| Structural Classification<br>Class:<br>Other<br>Subclass:<br>Ribbon-helix-helix (RHH)                                          | Nuclear magnetic re.<br>(1994) J. Mol. Biol. 2<br>PMID: 8107113 Pub<br>Abstract:<br>The Arc repress<br>solution structure of<br>approach (IRMA) fo<br>distance geometry a<br>molecular dynamics<br>NOE build-ups in H<br>rotation, aromatic r | sonance solution structure of<br>36: 328-41<br>Med<br>or of Salmonella bacteriopha<br>Arc has been determined fro<br>llowed by direct NOE refiner<br>und further refined with a<br>in a parallel refinement prot<br>20 and 2H2O via relaxation to<br>ing flaps and internal mobili | In. The matrix of with trained e set of stucture. Only the fill | ule viewer shows the original PDB<br>rst NMR model was loaded. |            |            |

## **Oligomeric states in MFIB**





#### Residue with Solvent Accessible Main-chain Patches



### Amino acid compositions



■ MFHE ■ GLHE

### Number of buried residues



### **Burial of residues in monomers / dimers**

