- APPENDIX 8
. USE OF CHARACTER TABLES ‘

Ref. COl; EWK,172; AT1,121; TI; LE2,420

Many excellent discussions of the applications of group theory to problems in molecular
quantum mechanics are available in the literature. Here we only define the notation and list
a few equations which are useful for the application of character tables to problems in this
book. Our purpose is to provide material for review and easy reference.

The point groups of interest consist of symmetry operations which exist because of

molecular symmetry elements. The operations are:

Symbol Effect

E identity operation

o reflection through a plane

i inversion through the center of symmetry

Cn rotation by 2m/n

Sn rotation by 2m/n followed by reflection in the plane 1 to

the rotation axis
' The operation R can be represented by the matrix {P(R)nm} which produces the desired

ransformation of a set of basis vectors un. Thus

Rum = z T (R)nmun
n
The matrix elements provide sufficient representations of the operators because they have the

ame multiplication table as the operators. Accordingly, RjR, = R3 corresponds to the matrix

roduct
Z:F(R1)..F(R2) = T'(R3),
3 ij jk ik

e trace of such a matrix is called the character of the representation. For example, if

is represented by T'(R), the character is

X@R) =Y. r®)_
n

We are concerned with two applications of group theory; namely (a) the simplification

)f the solution of the Schrédinger equation for molecules having symmetry and (b) the
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determination of selection rules for transitions that are induced by radiation. The former

is possible because the eigenfunctions of the Hamiltonian which have the same eigenvalue

are bases for the irreducible representations of the symmetry group to which the molecule

belongs. 1In general, eigenfunctions which transform according to different irreducible
representations of the molecular symmetry group will have different eigenvalues, except in
cases of accidental degeneracy which are not related to symmetry. The eigenvalue problem can
thus be simplified and sometimes solved completely by choosing basis functions at the outset
which transform according to the irreducible representations of the symmetry group. The

construction of such functions is simplified by making use of the unnormalized projection

operator,
*
P, =3 x (R)R
3ome

which operates on an arbitrary function ¢ to generate a linear combination of functions

transforming according to the jth irreducible representation. Thus

Al

The complete basis is obtained by operating on % distinct functions where 2 is the dimension
of the jth irreducible representation. The resulting functions may not be orthogonal. 1In
some problems there are n-functions ¢ which are related by symmetry. When Eq. (1) is
applied to such a set with n > %, the resulting n linear combinations are not necessarily
linearly independent and the solutions may not be unique. It is always possible, however,
to construct a set of 2 linearly independent functions from such a set,

Simplifications occur in the eigenvalue problem because matrix elements of the

type

"
-I;iﬂhde

vanish when uy and uj transform according to different irreducible representations of the
symmetry group. Such integrals can be non-zero only when the representation of the integrand
is totally symmetric or contains the totally symmetric representation. Since ﬁftransforms
according to the totally symmetric representation of the molecular symmetry group, the
integral will vanish unless the direct product of the representations of uy and uj contains
the totally symmetric representation. It can be shown that this only occurs when the
representations of ug and uj are identical, E:E:-Fi = Fj.
In order to determine selection rules in molecular spectroscopy we need to consider

integrals of the type

;];ﬁx'u dt
1 £

W w B¢ w2 W (RIRY (1)
| i

en I ‘EE.
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where # is a perturbation and uy and u are eigenfunctions of the unperturbed Hamiltonian.

The integral will vanish unless the direct product of the representations of uy and u, is
J

equal to or contains the representation of i, In specific problems the symmetry of

” ' 3 3 3
H is known and the transformation properties of u, and u,. must be determined. Often we are
a '

concerned only with the number of allowed transitions, e.g. in infrared and Raman
. spectroscopy. In such cases the apparatus of group theory can be used to obtain directly
. the number of eigenfunctions n, which transform according to the ith irreducible representa-

ivtion of the symmetry group. The procedure is to select a set of basis functions (vectors)
ﬁ‘which are sufficient for the description of the symmetry behavior of the eigenfunctions.
. The resulting representation (set of matrices) TI'(R) is usually reducible, but it contains the

' irreducible representations associated with each of the eigenfunctions; i.e.

PR) =0T, (R) (2)
ol
3
he number of times the ith irreducible representation is contained in the reducible
epresentation I'(R) is given by
(3)

ni=%§xmnym

where h is the order of the group (no. of symmetry elements) and x(R) is the character of

R in the reducible representation.
If the representations of both ug and u, are known for the integral above, then the

representation based on their direct product is required. In practice only the characters

Consider the general case where the sets {u} and {v} are

of this representation are needed.
The direct product of the two sets,

bases for the representations Fi and Pf, respectively.
i.e. the set of products U Ve, is the basis for the direct product representation

rif = Tifo. It can be shown that the character for the operation R in the direct product
representation is given by

xif(R) = xi(R)xf(R) (4)

where Xi(R) and xf(R) are the characters of R in the representations Fi and Ff, respectively.
It is possible that {u} and {v} are bases for the same irreducible representation T..

Then Eq. (4) gives Xii(R) = xi(R). This relation is sufficient for the one-dimensional

Tepresentations; however, when Pi is degenerate new complications arise. We consider two

Ccases of special interest in spectroscopy.

(1) Excited vibrational states: A vibrational frequency v having d-fold degeneracy is

These modes (normal coordinates) form the basis
If the ith mode of

associated with a set of d normal modes.

for the d-dimensional representation I' of the molecular point group.
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this set has the vibrational quantum n., then the total excitation of these modes can be

indicated by the constant

d
o iglni

It can be shown that the total vibrational wave function for the degenerate set transforms

as [Fn]+ which is the symmetric direct product of T with itself n times (LE2,422). This
situation differs from the one considered above because there is only one set of basis '
functions. Consider for example the case where n = 2. If two different d-fold degenerate

sets, X, (dme e mie Sod Yt and ' (i =1, *++, d), were involved then the direct product l
would contain d? elements X;y;- When {x} = {y}, only d(d + 1)/2 products can be formed. All

of the basis functions in the direct product set are symmetric functions of the types xi

or xiyj + xjyi = xixj ot xjxi. The d(d - 1)/2 antisymmetric combinations xiyj - xjyi clearly !
vanish in this case. It can be shown that the character for R in the symmetric direct

product representation for a doubly excited state (n = 2) is given by {

Xpp ®F = 2 [ (R)2 + X (R?)] 5

This equation holds for symmetric direct products (Fxl")+ for representations I' of any
dimension. The generalizations of Eq. (5) to triply excited (n = 3) and higher states do,
however, depend on the degeneracies involved (HE2,258; WDC,152).

(2) Excited electronic states: As discussed in Chapter 9 the many-electron wave functions

for molecules must obey the Pauli exclusion principle. Consider for example the ground state
of the benzene molecule. According to Problem 9.16 the configuration for the m-electrons

can be written as (azu)z(elg)“. The repeated application of Eq. (4) neglecting spin
restrictions gives the following resolution of this configuration into states:

3Alg i+ 3Azg + SEzg

However, the exclusion principle severely limits the number of possibilities and, in fact,
permits only the A, state with S = 0 for this or any other closed shell system (see

Problem 11.17).

lg

For a degenerate state (transforming iike ') containing two electrons, symmetric and
antisymmetric spin functions corresponding to S = 1 and S = 0, respectively, are found.
The allowed states, i.e. those combinations of spatial and spin functions which satisfy the
exclusion principle, are obtained by associating the singlet (S = 0) spin function with

spatial functions which transform like representations resulting from the symmetric direct

product of I' with itself; and the triplet (S = 1) spin functions with the spatial functions

which transform like representations resulting from the antisymmetric direct product (TxT)~
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of T with itself. The characters for (I‘xI‘)+ are obtained with Eq. (5) while the

. characters for (I'xl')” are obtained from the equation:

Xpp R = 3 Ixp (®)2 = X (®2)] 6)

When more than two equivalent electrons are present, the calculation becomes much more
nvolved. The reader should consult the article by Ford (listed below) and the references
ontained therein for discussions of the general case. The’symmetric group algebra which

: required for the construction of properly antisymmetrized many-electron wave functions
explained in MA,158.

¢ D E. Ford, J. Chem:iEdi 49, 336:.(1972),

ample 1: Construction of symmetry orbitals for the m-electrons in the allyl radical using
‘basis functions.

The allyl radical which is treated in Problems 9.12 and 9.13 has C2V symmetry, i.e. it
the following symmetry elements: E, Cjp, ov(xz) and c;(yz).

y4
2|
Zo
be 203 Y
‘(/’ z ‘{/’
‘ enote the 2px orbitals by ¢1, ¢, and ¢3. Then R operating on ¢; gives:

E¢p = ¢15  Cab1 = -¢35 0 (x2)$1 = ¢35 0 (yz)é1 = =41
:using Eq: (1)

P(A1)¢1 = ¢1 - ¢3 + ¢3 - ¢1 =0
CP(Ap)9 = ¢1 - 3 - 03 + &1 = 2(¢1 - ¢3)

P(By1)d; = ¢y + ¢3 + ¢3 + ¢1 = 2(¢1 + ¢3)
FP(Bo)dy = ¢1 + 93 - 93 -6 =0

]function $3 gives nothing new, but for ¢, we find:
Edp = ¢35 Ca9p = —¢2; 0 (x2)¢2 = ¢33 o, (y2)¢2

]

-%2

P(A1) = ¢p - 6o + 6o — 62 = 0; P(A3) = 0; P(By) = 4¢2;5 P(Bp) =0
there are two combinations which transform according to B; and one which transforms
ding to A,. When normalized these become
F 1 ol
10 —= (¢1 + ¢3), 923 Kpgiim=mi (1 =i03)
V2 V2

Se are, of course, the same functions which were derived intuitively in Problem 9.13.
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Example 2: A representation for C2v based on the 2pX orbitals of the allyl radical.
The MO's for the m-electrons are linear combinations of the 2px orbitals which
(1) diagonalize the Hamiltonian and (2) transform according to the irreducible representations
of the molecular symmetry group. Suppose that we choose the functions ¢;, ¢, and ¢3 as
bases for a three-dimensional representation of CZV' The matrices for this reducible

representation can be written out quite easily:
01 0. 0 61 $1
El 92 = ik 0 $o 7 do
- \¢3 0 -1 $3 ¢3
¢1
Col 9o | =
$3
61 0
boe )= 20 0l
b3
$1 -1 0 0 o1 -61
or (y2) | ¢2 $p ) =] «by
¢3 ¢3 -¢3

The characters for this representation are thus

B Gy dilxz) (o (y2)

ov(xz)

F(pr) Fein=k 1 -3
The application of Eq. (3) then immediately gives the number of times each of the
irreducible representations are contained in F(pr) and thus the number of eigenfunctions
which transform according to each of the irreducible representations. The results are

(using the character table for sz):

n(a;) = (1/4)(3-1+1-3)=0
n(Ay) = (1/4)(3~-1-1+3) =1
n(By) = (1/4) 3+ 141+ 3) =2
n(By) = (1/4)3+1-1-3)=0

Example 3: Determination of the symmetries of the normal modes of vibration for Hy0 and

- B - e N N e - ——
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the identification of infrared and Raman active modes. The structure of the Hy0 molecule

is shown below:

PC2

In order to represent the motion of the atoms in a molecule we use a set of 3N cartesian
vectors, three of which are shown above. These vectors provide a basis for a 9 dimensional

representation of C Consider for example the operation Cj:

2V

(007 poiol 0aen 0o 0k Y B )
B fannabeleg 000 0k s
0. 0 0 ngE 0 w1 00 0 ahide 2y
Wloog 0 el 0 000 s okalx > he
§ -1 0 a0 0 0 0 Uy > e
0 Ol Ak 0 0 0 0 0 0 Zyo Zyy
0 0 0pa a0 Fg w0 -1 00T 0 X =%,
0 0 0 0 0 0 0 -1 0 Yo ~Yq

R e e T e

The column vector after rotation was constructed by inspection and the matrix was then set
up to give the desired effect. As explained previously we only need the character

(trace) of this matrix which is -1. It should be clear that only atoms which are "unmoved"
by the symmetry operation can contribute to the character, i.e. only atoms which lie on

the corresponding symmetry element can contribute. For the operation cv(xz) only the
OXygen atom is unmoved and for it X0sY(2 20 4 X0»~Yq220" Therefore x(oxz) =il

Similarly, 0, H1, and H2 all lie on Oyz and each contributes +1 to give x(Oyz) = +3. The
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characters for I'q are shown below:

sz E Co Ov(xz) O;(yz)
T gy %1 ¥3
This representation can be reduced using Eq. (3).
n(A1)=—Z-(9—l+1+3)=3
1
H(A2)=Z(9-l—l-3)=l
il
n(B1)=Z(9+l+l'3)=2
s
n(B2)=Z(9+l-l+3)=3

Thus I'g = 3A; + Ay + 2B; + 3B,. The character table for sz in Appendix 8 indicates that
the three translations x, y, z and the three rotations Rx’ Ry, RZ provide a basis for the
representation

F(trgns, rot) = A + A, + 2B} + 2B,
This leaves for the genuine vibrations:

I (vib) = 2A; + B,

The normal coordinates for atomic motion are three in number with two transforming like A;

and one like Bj.
The transition moment for a harmonic oscillator was considered in Problem 10.12. For

the fundamental transition (v'' = 0 - v' = 1) the x-component of the transition moment is

proportional to

—[wv'=lxwv"=0d_r (1)

"=Q '=1
But since wv is totally symmetric and wv transforms like the normal coordinate Q, this

integral will vanish unless x transforms according to the same irreducible representation
as Q, i.e. for the integrand to be totally symmetric the product xQ must be totally

symmetric. The general rule is:

I. The fundamental vibration for a given normal coordinate will be active in the

infrared spectrum only if the normal coordinate transforms accordihg to the same

irreducible representation of the molecular symmetry group as one or more of the Cartesian

coordinates.
Raman scattering results from an induced electric dipole moment. In place of the

Cartesian coordinate in (1) a component of the polarizability tensor must be substituted. e.g.

v'=1 v''=0
f U] axyw dt
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The component axy transforms as xy, o, as Xz, and so on. The general rule is:

II. The fundamental vibration for a given normal coordinate will be active in the

Raman spectrum only if the normal coordinate transforms according to the same irreducible

representation of the molecular symmetry group as one or more of the components of the

polarizability tensor.
Applying rules I and II to the Hy0 molecule we find that there are two A; modes, both of

which are infrared and Raman active. There is one By mode which is also infrared and Raman
active. Therefore, three frequencies will be found in the infrared spectrum and the same
. three frequencies will be found in the Raman spectrum. Information is also available about

the polarization of the scattered light (Raman lines). It turns out that only those

fundamentals associated with totally symmetric modes will be polarized. In the case of

HoO0 the B, mode will give rise to a depolarized Raman line.
Example 4: Determination of the symmetries and multiplicities of the excited states
arising from the configuration (a;)!(e)? of the cyclopropenyl radical.

This C3v system is discussed in Problem 9.15. The (al)1 electron causes no problems.
The representation is A and the spin is 1/2, i.e. the symbol is 2A1. For the pair (e)2,
however, we must be careful with the exclusion principle. For S = 0 and S = 1 we require
symmetric and antisymmetric spatial functions, respectively. The necessary characters are

iven in the table below for the E representation of C3v

R E C3 GV
K< Wi o0e bR
¥ (R) 2 7 0
¥ (R) 2 4 1 0
X (R?) 9l 2
xRt 3 0 2
x(R)™ 1 Litea]

The characters x(R)+ and x(R)  have been obtained using Eqs. (5) and (6), respectively.
Equation (3) then permits the following reductions
S'=0: (ExE)+ = A] + E, S'= 1: '(ExE) = A,
Combining these with the appropriate multiplicities then gives
(e)2 » 1a; + 1E + 34,
The complete set of states is obtained from the product
2ax(1A; + 1E + 3A5) = 2A; + (PA1xME) + (PA1x3A4)) = 2A7 + 2E + A, + %A
This last resolution has been carried out with Eqs. (3) and (4) and the C3v character
table. The multiplicities are obtained from simple vector addition, diey 81t 8o > 81t 5y,

By o+ Soi.= I vas e ‘Sl = Sz[.
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The

In this appendix some of-the most widely used character tables are reproduced.
irreducible representations Fi are listed at the left of each table in the conventional
notation: A, B (one-dimensional representations), E (two-dimensional representation), T
(three-dimensional representations). Across the top, the classes of symmetry operations are

given. In applying Eq. (3) the coefficients of these classes must be taken into account.

Character Tables
1,7 :The Cn Groups (n = 2,3,4,5,6)

¢a bR 0H I |
1 1 zst Xz,yz,zz,x}’
B 1 -1 x,y,RX,Ry VZyXZ
Cj B iCa Gt , | e = exp(2mi/3)
A 1 1 1 z,Rz x2 + y2,22
it € E* 2 2
E (x,y)(R_,R ) | (x° - y°,xy)(yz,xz)
] e* € o
Cy BOul  0a0n
A 1 1 1 1 z,R, x2 + y2,22
B ) ] 1 -1 x2 - y2 xy
E : 4 i i (X.Y) (RX’R}’) (}’Z,XZ)
d -1i -1 g
Cs E.iCs Ged Ced o cst e = exp(2mi/5)
A 11 1 ) 1 z,R_ x2 + y2,22
9 2% *
LR e e e e T e T e
af e* 82* g2 € s
2 * 2%
E, 1 € * € €* € (x2 X yz’xy)
1 g2 € € g2
Cg B 0 C3 € ii0a2 02 e = exp(2mi/6)
A 1 1 1 1 1 1 z,R, x2 + y2,22
B 1 -1 1 -1 1 -1
* *
E, 1 e* -€ 1 € € (x,y) (hivi)
1 € -€ -1 e € (Rx,Ry)
* wr ol
E, 1 -e -€ 1k € € (x2 - yz’xy)
* *
1k -€ -€ 15 -€ -€
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The Cnv Groups (n = 2345 169
L
e cv(xz) ov(yz)
Pt g 1 ' z x2,y2,2?
Yot el 2] . Xy
il -1 1 -1 x,Ry X2
Tl -1 i skl
E 2C3 30V
1: 1t il z x2 + y2,22
1 1 -1 Rz
202y 0 G,y) R R (x? - y2,xy) (xz,y2)
s E . 2C) Co ZOV 20’d
il 1 1 1 1 z x2 + y2,2?
1 1f i -1 -1 RZ
o=l 1 1 -1 x2 - y2
15 el 1hae] 1 xy
2 0 -2 0 0 (x,y)(Rx,Ry) (xz,y2)
2
5y E 2Cs 2Cs SOV
1 1 1 it z x2 + y2,2z2
1 1 1) -1 RZ
9 i 0eas 2% 2cosl44’ 0 (x’y)(Rx’Ry) (xz,y2)
E, i oenslh4® i 2cosi2’ 0 (x2 - y2,xy)
& E 2Cg 2C3 Co 30v 30d
Ay 1 1 1 it 1 1 z x2 + y2,2?
Ay i il i 1 -1 -1 Rz
By i -1 1 -1 1c -1
B L1 -1 iy ey 1
Ey 2 il -1 -2 0 (x,y)(RX,Ry) (xz,y2)
E) 2 -1 -1 2 0 (x2 - y2,xy)
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3. iThe Cnh Groups (n = 2,3,4,5,6)
G [ B Con el ol
Ay 1 T 1 11k x2,y2,22,xy
Bg L= A=l x,Ry XZ,Y.e
Au 1 1 -1 -1 z
Bu e sl =1 doNilset sy
G - E- 0y C32 gl i 83 S3° e = exp(2mi/3)
5! ey 1 1 3 1 R, x2 + y2,22
* *
i i
E' { oy sy } x,y) | &2 - y2,xy)
i1 € 1 € €
AV 1 1k 1 -1 -1 -1 Z
M e i
" 1 € € 1 € € (RX’R ) (x7.,52)
1 e* € -1 -c* -€ y
Con | B Cu. Ca Cy3 4 epd g}y
A 1 1 i} 1 1 1 i R x2 + y2,2z2
g z
B, G TS Bt | 1223 1 a1 x2 - y2,xy
i 1 i -1 -i i p -1 -i (RX’R ) Gzive)
g £ et gl iy y
o 1 1 i 1: -1 -1 -1 -1 z
Bu i 1k ik -1 -1 i -1 1
v ik ol -1 -1 -1 -1 ¥ 5 (x.5)
b}
" i s e L e 1 -
CSh E Csg C52 C53 qu Oh Ss 357 553 559 e = exp(2mi/5)
A' et o] 1 1 T 1 1 1 1 R, x2 + y2,22
2 2% * 2 2% *
B 1 € € > € 1 € € € € x5
1 gl pld¥ el £ 1 e* g2* g2 €
Eo' it €2 ¢g¥ € e2* 1 €2 e® € e2* (x2 - y2,xy)
bl
2 1 e2* ¢ e* g2 1 g2* € e* g2
A 14 it X 1 1k -1 -1 -1 -1 -1 Z
E." 1 € g2 g2* o -1 -€ -g2 -g2* ek (R ,R) (23.v8)
. 1 e g2* €2 € -1 gk —g2% -g2 -€ x"y :
L 1 g2 e* € 52* -1 -g2 oy -€ —g2%
2
i e2* ¢ s* g2 -1 —g2* =E —c¥ -2
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Use of Character Tables
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5. The Sy Group

Bl "B s 0 B

A N U e 'Rz x2 + y2,22

Lol Io Sl z x2 - y2,xy
Byl
E > . 1. (x,5) (R,R)) | (xz,y2)
Yoot a1 4

6. The Cubic Groups

Td E 8C3 3C, 6Sy 60d

Ay 15 i} ik x2 + y2 + 22

&l i e 08 |

E 2 -1 0 0 (222 - x2 - y2,x2 - y2)
Tyl 3 =3 L (R, ,R SR

Tairf3 -1 -1 I (x.viz) (xy,xz,y2)

o | E 83 6C; 6Cy 3Cy (=Cy2) £ 68y 88g 30, 604
A1 1 1 1 1 1 1 1 1 x2 + y2 + 2?2

1g

1 1 -1 -1 1 -1 1 1 -1
2g
Eg 2 =1 0 0 2 0 -1 2 0 (2z2 - %% - y?
x2 - y?%)

Tlg 3 0 -1 1 -1 1 -1 -1 (Rx,Ry,Rz)

ng 3 0 -1 -1 o=l -1 1 (xz,y2z,Xxy)
A I it i 5 il ik -1 -1 -1 -1 -1

1u
A 1t 1 -1 -1 -1 -1 -1

2u

Eu 201 0 0 2 -2 0 -2
'Tlu 3 0 -1 -1 -3 -1 1 il (x,v,2)

T 3 1 -1 -1 -3 1 0 1 -1

2u

7. The va and Dmh Groups
T E 2¢ ° g

oy @ v
A= thoy 1 exiy, iyl g x2 + y2,22
TP m 1 -1 | R

E; =1 2 2cos® e (x,y) (Rx,Ry) (xz,yz)

Ego= ol 2 2cos2% (x2 - y2,xy)

E3 = @ 2 2cos39
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o )

th ZCm ZSm °°C2
zg+ 1 1 1 1 x2 + y2,22
L I 1 ik -1 R
g z
Hg 2 2cos? -2cos?® (Rx,Ry) (xz,y2)
By 2 2cos2¢ 2cos2® (x2 - y2,xy)
e R 1 -1 «1 |z
u
PR 1 1 -1 1
u
Hu 2  2cos?® 2cos? (x,y)

2 2cos2? -2cos2d

° o0




