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1 Classical virial theorem

1.1 Time average for �nite motion

Time average:

f = lim
T→∞

1

T

∫ T

0

f(t)dt (1)

Finite motion: the system is stably bound, all coordinates and momenta
remain �nite.

If the system performs �nite motion, then the time average of a full derivative
over the time is zero.

dF

dt
lim
T→∞

1

T

∫ T

0

dF

dt
dt = lim

T→∞

F (T )− F (0)

T
= 0 (2)

1.2 Virial theorem

Let us consider a closed, conservative particle system performing �nite mo-
tion.

d

dt

∑
i

~ri~pi = 0 (3)

d

dt

∑
i

~ri~pi =
∑
i

~vi~pi︸︷︷︸
miv2i=2Ti

+
∑
i

~ri ~̇pi︸︷︷︸
~Fi

(4)

where we used the formula of kinetic energy T and Newton's law. Time
averaging gives

2T = −
∑
i

~ri ~Fi (5)

where
∑

i ~ri
~Fi is the virial of the system. For closed system, the virial is

invariant. Let us move the origin by ~r0, then the new coordinates will be
~r′i = ~ri − ~r0 and the virial∑

i

~r′i ~Fi =
∑
i

~ri ~Fi − ~r0

∑
i

~Fi︸ ︷︷ ︸
0

=
∑
i

~ri ~Fi (6)

For a conservative system ~Fi = −~∇iU = − ∂U
∂~ri

. The �nal form of the virial
theorem

2T =
∑
i

~ri
∂U

∂~ri
(7)
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1.3 Virial theorem for k-th order homogeneous poten-

tial

K-th order homogeneous function:

αkf(x1, x2 . . . xN) = f(αx1, αx2 . . . αxN) (8)

where k is a speci�c constant, α ∈ R is arbritrary.

Euler's homogeneous function theorem:∑
i

xi
∂f

∂xi
= kf (9)

Proof:
Let us di�erentiate the de�nition over α, then set α = 1.

kαk−1f(x1, x2 . . . xN) =
∑
i

∂f

∂αxi
xi (10)

Virial theorem for k-th order homogeneous potential:

2T = kU (11)

Special case: for Coulomb potential k = −1 thus T = −1
2
U and E = 1

2
U .

2 Virial theorem in quantum mechanics

The time derivative of the expectational value of Â physical quantity

d

dt
〈Ψ|Â|Ψ〉 =

〈
∂Ψ

∂t

∣∣∣∣Â∣∣∣∣Ψ〉+ 〈Ψ|∂Â
∂t
|Ψ〉+

〈
Ψ

∣∣∣∣Â∣∣∣∣∂Ψ

∂t

〉
(12)

Using the time dependent Schrödinger equation

∂Ψ

∂t
= − i

~
ĤΨ (13)

d

dt

〈
Ψ
∣∣∣Â∣∣∣Ψ〉 =

〈
Ψ

∣∣∣∣∣∂Â∂t
∣∣∣∣∣Ψ
〉

+
i

~

〈
Ψ
∣∣∣ĤÂ− ÂĤ∣∣∣Ψ〉 (14)

For stationary states the expectation value is constant in time. For physical
quantities with no explicit time dependence〈

Ψ
∣∣∣[Ĥ, Â]∣∣∣Ψ〉 = 0 (15)

4



From this follows 〈
Ψ

∣∣∣∣∣
[
Ĥ,
∑
i

~̂ri~̂pi

]∣∣∣∣∣Ψ
〉

= 0 (16)

Using the distributive property of the commutation, we can only concern one
particle and one component (let us choose x).[

Ĥ, x̂p̂x

]
= Ĥx̂p̂x − x̂p̂xĤ + x̂Ĥp̂x − x̂Ĥp̂x︸ ︷︷ ︸

0

= x̂
[
Ĥ, p̂x

]
+
[
Ĥ, x̂

]
p̂x (17)

Using the form of the Hamiltonian for one particle

Ĥ =
p̂2

2m
+ Û (18)

and the canonical commutation relation

[r̂i, p̂j] = i~δij (19)

the commutators to calculate

[
Ĥ, x̂

]
=

1

2m

[
p̂2
x, x̂
]

=
1

2m

p̂x p̂xx̂︸︷︷︸
x̂p̂x−i~

−x̂p̂xp̂x

 = (20)

=
1

2m

 p̂xx̂︸︷︷︸
x̂p̂x−i~

p̂x − i~p̂x − x̂p̂xp̂x

 = −i~ p̂x
m

(21)

where we swap p̂xx̂ twice using the canonical commutation relation.[
Ĥ, p̂x

]
=
[
Û(x), p̂x

]
=

[
∞∑
n=0

U (n)

n!
xn, p̂x

]
=
∞∑
n=0

U (n)

n!
[xn, p̂x] (22)

where we used the Taylor expansion of the potential.

[x̂n, p̂x] = i~x̂n−1 + x̂n−1p̂xx̂− p̂xx̂n = · · · = i~nx̂n−1 (23)

where in each step we swap x̂p̂x. The result is[
Ĥ, p̂x

]
= i~

∞∑
n=0

U (n)

(n− 1)!
x̂n−1 = i~

∂U

∂x
(24)

where we used the Taylor expansion of the derivative function.
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Finally the commutation gives

[
Ĥ,
∑
i

~̂ri~̂pi

]
= −i~


∑
i

p̂2
i

mi︸ ︷︷ ︸
2T̂

−
∑
i

~̂ri
dU

d~̂ri︸ ︷︷ ︸
kÛ

 (25)

and the virial theorem for quantum mechanics reads

2
〈
T̂
〉

= k
〈
Û
〉

(26)

3 Hydrogen-like atomic orbitals

Ψnlm = Rnl(r)Y
m
l (θ, φ) (27)

where the radial function is

Rnl(r) =

√(
2Z

n

)3
(n− l − 1)!

2n(n+ l)!

(
2Zr

n

)l
e
−Zr
n L2l+1

n−l−1

(
2Zr

n

)
(28)

with L2l+1
n−l−1(x) generalized Laguerre polynomials. The �rst two of these are

Lα0 (x) = 1 (29)

Lα1 (x) = 1 + α− x (30)

The spherical harmonics are

Y m
l (θ, φ) = NeimφPm

l (cos θ) (31)

with Pm
l (x) associated Legendre polynomials. The quantum numbers have

the values n = 1, 2, . . . ; l = 0, 1, 2, . . . ; m = −l, . . . , l. The �rst few orbitals
are

1s = Ψ100 = 2Z
3
2 e−Zr

1√
4π

(32)

2s = Ψ200 =
1√
8
Z

3
2 (2− Zr) e

−Zr
2

1√
4π

(33)

2p0 = Ψ210 =
1√
24
Z

3
2Zre

−Zr
2

√
3

4π
cos(θ) (34)

2p±1 = Ψ21±1 =
1√
24
Z

3
2Zre

−Zr
2

√
3

8π
sin(θ)e±iφ (35)
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we can see that there are real orbitals, but also complex ones as 2p±1. But
the Schrödinger equation is linear and so the basis functions of a degenerate
subspace can be choosen as linear combinations that span the subspace. For
example if Ψ1 and Ψ2 are eigenstates with energy E, then

H(aΨ1 + bΨ2) = EaΨ1 + EbΨ2 = E(aΨ1 + bΨ2) (36)

the linear combination is also a solution in the same subspace. This can
be used to create real atomic orbitals from the linear combinations of de-
generate orbitals. p±1 orbitals remain degenerate until magnetic interactions
introduced. We can choose the following linear combinations of spherical
harmonics that span the m subspace

Ylm =


1√
2

(
Y −ml + (−1)mY m

l

)
m > 0

Y 0
l m = 0
i√
2

(
Y m
l − (−1)mY −ml

)
m < 0

(37)

this choice is the same as taking the real and imaginary part or cos(φ) and
sin(φ).

px =
1√
2

(p− + p+) (38)

py =
i√
2

(p− − p+) (39)

This gives the real p-orbital basis of px, py, pz. Note that the quantum
number m is no longer a good quantum number as the real basis states
are no longer Lz eigenstates. The real atomic orbitals can be used as basis
functions for calculations or visualization of orbitals.

4 He-like atom perturbational calculation

H = −1

2
∇1 −

Z

r1

− 1

2
∇2 −

Z

r2

+
1

|~r1 − ~r2|
(40)

where the electron-electron repulsion is considered as perturbation. The
unperturbed part is separable in particle indicies, thus we can seek the ground
state in a product form as Ψ(1)Ψ(2). The Hamilton operator is independent
of spin, so the spatial and spin variables can be written in a product form.
Since the electron structure of a He-like atom is (1s)2 (aufbau-principle), the
unperturbed ground state can be written as the following 1S two-electron
singlet (Pauli principle) state:

Ψ0(r1, s1, r2, s2) = Φ(100|r1)Φ(100|r2)1χ(s1, s2) (41)
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where Φ(nlm|r) are the hydrogen-like states, 1χ(s1, s2) = 1√
2
[α(s1)β(s2) −

β(s1)α(s2)] is the spin-function. In the expectation value integrals the sum-
mation gives 1 as the spin-functions are

∑
s1,s2

sχm(s1, s2)s
′
χm′(s1, s2) =

δs,s′δm,m′ . The unperturbed ground state energy is two times the hydrogen-
like ground state: E0

0 = −Z2. The �rst correction to the ground state energy
is the Coulomb-integral

E1
0 = J =

〈
Ψ0

∣∣∣∣ 1

r1,2

∣∣∣∣Ψ0

〉
(42)

After summation to spin variables

J =

∫
d3r1

∫
d3r2Φ∗(1)Φ∗(2)

1

r1,2

Φ(1)Φ(2) =

∫
d3r1

∫
d3r2
|Φ(1)|2 |Φ(2)|2

r1,2

(43)

=

∫
d3r1

∫
d3r2

ρ(r1)ρ(r2)

r1,2

=

∫
r1<r2

· · ·+
∫
r2<r1

· · · = 2

∫
r2<r1

. . . (44)

where we used that the charge densities are the same for the two electrons
(1 ↔ 2 index swap). Using the fact that the potential of a spherical charge
distribution is the same as the point charge for distances greater than rmax.

J = 2

∫
d3r1ρ(r1)

1

r1

∫
r2<r1

d3r2ρ(r2) (45)

= 2

∫ ∞
0

dr14πr2
1ρ(r1)

1

r1

∫ r1

0

dr24πr2
2ρ(r2) (46)

Using the radial charge density of s orbital ρ(r) = Z3

π
e−2Zr.

J = 32Z6

∫ ∞
0

dr1r
2
1e
−2Zr1

1

r1

∫ r1

0

dr2r
2
2e
−2Zr2︸ ︷︷ ︸

( ∂
∂(−2Z))

2

∫ r1

0

dre−2Zr︸ ︷︷ ︸
1−e−2Zr1

2Z

(47)

Calculating the derivative(
∂

∂2Z

)2
1− e−2Zr1

2Z
=

(
∂

∂2Z

)
r1e
−2Zr12Z −

(
1− e−2Zr1

)
(2Z)2

(48)

=

[(
r1e
−2Zr1 − 2Zr2

1e
−2Zr1

)
− r1e

−2Zr1
]

(2Z)2 − 4Z
[
r1e
−2Zr12Z −

(
1− e−2Zr1

)]
(2Z)4

(49)
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and introducing new variable x = Zr1

=
4Z

(2Z)4

(
xe−2x − 2x2e−2x − 2xe−2x + 1− e−2x

)
(50)

=
1

4Z3

{
1− e−2x

(
1 + 2x+ 2x2

)}
(51)

the integration element with the new variable dr1 = dx
Z

J = 8Z

∫ ∞
0

dxxe−2x
{

1− e−2x
(
1 + 2x+ 2x2

)}
=

5

8
Z (52)

5 Hartree-Fock method for helium

What is the best product form wavefunction for He ground state? Let us
use the variational principle for a wavefunction Ψ(1, 2) = φ(1)φ(2) with the
condition 〈φ|φ〉 = 1.

EHF = 〈Ψ |H|Ψ〉 − λ 〈φ|φ〉 (53)

H = h(1) + h(2) +
1

r12

(54)

The variational problem is

δ [〈Ψ |H|Ψ〉 − λ 〈φ|φ〉] = 0 (55)

〈Ψ |H|Ψ〉 = 2 〈φ |h|φ〉+

〈
φ(r1)φ(r2)

∣∣∣∣ 1

r12

∣∣∣∣φ(r1)φ(r2)

〉
(56)

δ 〈φ |h|φ〉 = 〈δφ |h|φ〉+ 〈φ |h| δφ〉 = 〈δφ |h|φ〉+ 〈δφ |h|φ〉∗ (57)

= 〈δφ |h|φ〉+ c.c. (58)

δ

〈
φ(r1)φ(r2)

∣∣∣∣ 1

r12

∣∣∣∣φ(r1)φ(r2)

〉
= (59)

=

〈
δφ(r1)φ(r2)

∣∣∣∣ 1

r12

∣∣∣∣φ(r1)φ(r2)

〉
+

〈
φ(r1)δφ(r2)

∣∣∣∣ 1

r12

∣∣∣∣φ(r1)φ(r2)

〉
+ c.c.

(60)

= 2

〈
δφ(r1)φ(r2)

∣∣∣∣ 1

r12

∣∣∣∣φ(r1)φ(r2)

〉
+ c.c. (61)
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where we used the particle exchange symmetry of the potential.

δ [〈Ψ |H|Ψ〉 − λ 〈φ|φ〉] = (62)

2

∫
d3rδφ∗(r)

(
−1

2
∆− Z

r

)
φ(r) + 2

∫
d3rδφ∗(r)

(∫
|φ(r′)|2

r12

d3r′

)
φ(r)

(63)

− 2E

∫
d3rδφ∗(r)φ(r) + c.c. = 0 (64)

Let us calculate the functional derivative with respect to φ∗ (it can be shown
that it is equivalent to variation with φ). This way the c.c. parts do not give
contribution to the variation.

comment: a reminder for the calculation of functional derivative for a
general (semilocal) functional

F [ρ] =

∫
f(r, ρ(r),∇ρ(r))d3r (65)

δF

δρ(r)
=

∂f

∂ρ(r)
−∇ ∂f

∂∇ρ(r)
(66)

is the Euler-Lagrange equation. For local functional

F [ρ] =

∫
f(r, ρ(r))d3r (67)

δF

δρ(r)
=

∂f

∂ρ(r)
(68)

the functional derivative results in a partial derivative and getting rid of the
integration with respect to the variable r of the varied function.

The result of the variation is

δ [〈Ψ |H|Ψ〉 − λ 〈φ|φ〉]
δφ∗

= (69)

=

(
−1

2
∆− Z

r

)
φ(r) +

(∫
|φ(r′)|2

r12

d3r′

)
φ(r)− Eφ(r) = 0 (70)

The Hartree-Fock equation is given by(
ĥ+ Ĵ

)
φ(r) = Eφ(r) (71)
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6 Orthogonalization

Orthogonalization problem arises from the linear variational method, that
leads to a generalized matrix eigenvalue problem in the basis of {φi}

Hc = ESc (72)

here S is the matrix of overlap integrals Sij = 〈φi|φj〉 that is Hermitian by
de�nition and positive de�nite for linearly independent basis. If the basis is
orthonormalized Sij = δij and we can solve a regular eigenvalue problem.

6.1 Gram-Schmidt orthogonalization

The �rst basis remains unchanged and every other new basis is perpendicular
to the new basis set.

u1 = v1 uk = vk −
k−1∑
j=1

Puj(vk) (73)

In each step, orthogonalization achieved by substracting the projection of
the current basis element to the already orthogonalized subspace.

Puj(vk) = 〈uj|vk〉
uj
||uj||

(74)

The problem with this process is that it is non-symmetric.

6.2 Löwdin's orthogonalization

The overlap matrix can be diagonalized by a similarity transformation

V†SV = Λ = diag(λi) (75)

where V is unitary (VV† = 1) and λi > 0 (positive de�nite).
Let us de�ne matrix K by

K = diag

(
1√
λi

)
(76)

The inverse transformations are

VΛV† = S (77)

VKV† = Z (78)
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where SZ2 = 1 so Z is the −1
2
th power of S. To prove this

SZ2 = VΛV†VKV†VKV† = VΛK2V† = 1 (79)

So S−
1
2 is a Hermitian positive de�nite matrix with the form

S−
1
2 = Vdiag

(
1√
λi

)
V† (80)

Let us multiply the generalized eigenvalue equation with S−
1
2 from the left

S−
1
2 HS−

1
2︸ ︷︷ ︸

H′

S
1
2 c︸︷︷︸
d

= E S−
1
2 c︸ ︷︷ ︸

d

(81)

and we get the regular eigenvalue problem.
This transformation of the eigenvalue equation is equavivalent with the

change of basis to the Löwdin-orthogonalized symmetric basis {ψi}.

ψi =
m∑
k=1

S
−1/2
ki φk (82)

these span the same subspace as {φi} but are orthonormalized.

〈ψi|ψj〉 =

〈∑
k

S
−1/2
ki φk

∣∣∣∣∣∑
l

S
−1/2
lj φl

〉
=
∑
k,l

S
−1/2
ik 〈φk|φl〉︸ ︷︷ ︸

Skl

S
−1/2
lj = S0

ij = δij

(83)
The Hamiltonian matrix element in this Löwdin basis reads〈
ψi

∣∣∣Ĥ∣∣∣ψj〉 =

〈∑
k

S
−1/2
ki φk

∣∣∣Ĥ∣∣∣∑
l

S
−1/2
lj φl

〉
=
∑
k,l

S
−1/2
ik HklS

−1/2
lj = H ′ij

(84)
The expansion of a function in the new basis has the form∑

k

ckφk =
∑
k

ck
∑
l

S
1/2
lk ψl =

∑
k,l

(
S

1/2
lk ck

)
ψl =

∑
l

dlψl (85)

These are the same as above. Using the ortonormalized Löwdin basis {ψi},
the linear variational problem leads to a standard eigenvalue problem.
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6.3 Two dimensional example

Let the basis be φ1, φ2 normalized functions with overlap integral S. The
overlap matrix is

S =

(
1 S
S 1

)
(86)

The eigenvectors and eigenvalues are

e1 =
1√
2

(
1
1

)
λ1 = 1 + S (87)

e2 =
1√
2

(
1
−1

)
λ2 = 1− S (88)

The unitary matrix diagonalizing S is

V =

(
eT1
eT2

)
=

1√
2

(
1 1
1 −1

)
(89)

and the diagonalized matrix is obviously

Λ =

(
1 + S 0

0 1− S

)
(90)

and K is

K =

(
1√

1+S
0

0 1√
1−S

)
(91)

From this, let us calulate S−1/2

S−
1
2 = VKV† =

1

2

(
1 1
1 −1

)( 1√
1+S

0

0 1√
1−S

)(
1 1
1 −1

)
= (92)

=
1

2

(
1√

1+S
+ 1√

1−S
1√

1+S
− 1√

1−S
1√

1+S
− 1√

1−S
1√

1+S
+ 1√

1−S

)
(93)

The orthonormalized set is

ψ1 = αφ1 + βφ2 (94)

ψ2 = βφ1 + αφ2 (95)

where

α =
1

2

(
1√

1 + S
+

1√
1− S

)
(96)

β =
1

2

(
1√

1 + S
− 1√

1− S

)
(97)
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Figure 1: Figure from Istvan Mayer's book titled Simple Theorems Proofs,
and Derivations in Quantum Chemistry
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7 Linear variation (Ritz method) for excited

states of He

H = h(1) + h(2) +
1

r12

(98)

h = −1

2
∆− Z

r
(99)

let φa and φb one particle ground and excited eigenstates respectively

h(i)φa(ri) = Eaφa(ri) h(i)φb(ri) = Ebφb(ri) (100)

and be ortonormalized ∫
d3rφ∗a(r)φb(r) = δab (101)

The non-interacting two particle basis states are the product of one particle
states

ψ1(1, 2) = φa(r1)φb(r2) ψ2(1, 2) = φb(r1)φa(r2) (102)

The two particle solution approximated by the linear combination

Ψ = c1ψ1 + c2ψ2 (103)

Let us solve the generalized eigenvalue problem

Hc = ESc (104)

The overlap matrix is the identity matrix because

S11 = 〈ψ1|ψ1〉 =

∫
d3r1

∫
d3r2φ

∗
a(r1)φ∗b(r2)φa(r1)φb(r2) = (105)

= 〈φa|φa〉 〈φb|φb〉 = 1 (106)

S22 = 〈ψ2|ψ2〉 = 1 (107)

S12 = 〈ψ1|ψ2〉 =

∫
d3r1

∫
d3r2φ

∗
a(r1)φ∗b(r2)φb(r1)φa(r2) = (108)

= 〈φa|φb〉 〈φb|φa〉 = 0 (109)

S21 = 〈ψ2|ψ1〉 = 0 (110)
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Let us calculate the Hamiltonian matrix

H11 = 〈ψ1 |H|ψ1〉 = (111)

=

∫
d3r1

∫
d3r2φ

∗
a(r1)φ∗b(r2)

[
h(1) + h(2) +

1

r12

]
φa(r1)φb(r2) (112)

= Ea + Eb +

∫
d3r1

∫
d3r2
|φa(r1)|2 |φb(r2)|2

r12︸ ︷︷ ︸
Jab

(113)

H22 = 〈ψ2 |H|ψ2〉 = H11 = Ea + Eb + Jab (114)

H12 = 〈ψ1 |H|ψ2〉 = (115)

=

∫
d3r1

∫
d3r2φ

∗
a(r1)φ∗b(r2)

[
h(1) + h(2) +

1

r12

]
φb(r1)φa(r2) (116)

= Ea 〈φa|φb〉︸ ︷︷ ︸
0

〈φb|φa〉︸ ︷︷ ︸
0

+Eb 〈φa|φb〉︸ ︷︷ ︸
0

〈φb|φa〉︸ ︷︷ ︸
0

+ (117)

+

∫
d3r1

∫
d3r2φ

∗
a(r1)φ∗b(r2)

1

r12

φb(r1)φa(r2)︸ ︷︷ ︸
Kab

(118)

= Kab (119)

H21 = H12 (120)

where J is the Coulomb integral and K is the exchange integral. The matrix
eigenvalue problem reads(

Ea + Eb + J K
K Ea + Eb + J

)(
c1

c2

)
= E

(
c1

c2

)
(121)

The eigenvectors and eigenvalues are

csym =

(
1
1

)
E+ = Ea + Eb + J +K (122)

casym =

(
1
−1

)
E− = Ea + Eb + J −K (123)

in the sense of the Pauli-principle, the symmetric spatial solution is spin
singlet (para He) and the antisymmetric spatial solution is spin triplet (orto
He).
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8 Fermion wavefunction

8.1 Slater-determinant

Let us construct the wavefunction of N independent fermion. The inde-
pendence allows us to write the wavefunction in product form of one-particle
spin-orbitals, however the wavefunction must be totally antisymmetric in the
sense of Pauli-principle. This leads to the Slater-determinant:

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(1) φ1(2) · · · φ1(N)
φ2(1) φ2(2) · · · φ2(N)
...

...
. . .

...
φN(1) φN(2) · · · φN(N)

∣∣∣∣∣∣∣∣∣ =
1√
N !

N∑
i1,...,iN=1

εi1,...,iNφi1(1) . . . φiN (N)

(124)
where ε is the Levi-Civita symbol.

8.2 Separation of orbital and spin part

If the Hamilton operator of the system does not contain spin-operator, then
the eigenstates can be separated by orbital and spin functions in a product
form

Ψ(1, 2, . . . , N) = Φ(r1, r2, . . . , rN)χ(s1, s2, . . . , sN) (125)

example: two electron wavefunction

Ψ(1, 2) = φsym(r1, r2)1χ(s1, s2) (126)

Ψ(1, 2) = φasym(r1, r2)3χ(s1, s2) (127)

for independent electrons in the same orbital

Ψaa = φa(r1)φa(r2)1χ(s1, s2) =
1√
2

∣∣∣∣φa(r1)α(s1) φa(r2)α(s2)
φa(r1)β(s1) φa(r2)β(s2)

∣∣∣∣ (128)

for independent electrons in di�erent orbitals

Ψab =
1√
2

(φa(r1)φb(r2)± φb(r1)φa(r2))

{
1χ(s1, s2)
3χ(s1, s2)

(129)

homework : Find the Slater-determinant form of

1√
2

(φa(r1)φb(r2) + φb(r1)φa(r2))
α1β2 − β1α2√

2
(130)
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solution: It cannot be written in one Slater-determinant form

1

2

∣∣∣∣φa(r1)α(s1) φa(r2)α(s2)
φb(r1)β(s1) φb(r2)β(s2)

∣∣∣∣− 1

2

∣∣∣∣φa(r1)β(s1) φa(r2)β(s2)
φb(r1)α(s1) φb(r2)α(s2)

∣∣∣∣ (131)

Remember, that this form was the Eckart variational Ansatz, that provided
the post Hartree-Fock radial correlation. As the Hartree-Fock solution is the
best one Slater-determinant solution, the Eckart-form is a linear combination
of Slater-determinants.

9 Hartree-Fock method

Variational method for independent fermion model. Variational Ansatz: one
Slater-determinant. The method provides the best approximation for the one
particle spin-orbitals. Condition: let the spin-orbitals be orthonormalized:∑

s

∫
d3rφ∗i (r, s)φj(r, s) = δi,j (132)

The Hamilton operator

H =
∑
i

[
−1

2
∆i + V (ri)

]
︸ ︷︷ ︸

hi

+
1

2

∑
i,j
i 6=j

v(ri − rj) (133)

The energy functional to be minimalized

EHF = 〈Ψ |H|Ψ〉 −
N∑

i,j=1

εj,i 〈φi |φj〉 (134)

The one-particle operator expectation value is〈
Ψ

∣∣∣∣∣∑
i

hi

∣∣∣∣∣Ψ
〉

=
∑

s1,...,sN

∫
d3r1 . . . d

3rN · (135)

·
∑

k1,...,kN

1√
N !
εk1,...,kNφ

∗
k1

(1) . . . φ∗kN (N)· (136)

·
∑
i

hi
∑
l1,...,lN

1√
N !
εl1,...,lNφl1(1) . . . φlN (N) (137)
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as hi operates only on the i-th particle, the terms containing j 6= i can be
integrated separately

=
1

N !

∑
k1,...,kN

∑
l1,...,lN

εk1,...,kN εl1,...,lN

N∑
i=1

∏
j 6=i

〈
φkj(j)

∣∣φlj(j)〉︸ ︷︷ ︸
δkj,lj

 〈φki(i) |hi|φli(i)〉
(138)

let us do the summation over lj and swap the indicies of both ε until ki and
li are the �rst indicies (this wont change the sign of the expression).

=
1

N !

∑
ki

∑
li

∑
k1,...,kN

εki,k1...,kN εli,k1...,kN︸ ︷︷ ︸
δki,li (N−1)!

N∑
i=1

〈φki(i) |hi|φli(i)〉 (139)

=
1

N

N∑
i=1

N∑
ki=1

〈φki(i) |hi|φki(i)〉 =
∑
k

〈φk |h|φk〉 (140)

where we used that the expectation value is independent of the particle index
so summation over i gives N .

The expectation value of two-particle operators

〈
Ψ

∣∣∣∣∣∣∣∣
1

2

∑
i,j
i 6=j

v(ri − rj)

∣∣∣∣∣∣∣∣Ψ
〉

=
1

2

1

N !

∑
i,j
i 6=j

∑
k1,...,kN

∑
l1,...,lN

εk1,...,kN εl1,...,lN · (141)

·
∑

s1,...,sN

∫
d3r1 . . . d

3rNφ
∗
k1

(1) . . . φ∗kN (N)
1

ri,j
φl1(1) . . . φlN (N) (142)

Doing the same procedure as above, the indicies not equal to i or j can be
integrated separately resulting in a Kronecker delta for each kl index pairs.
Summation over l indicies gives

1

2

1

N !

∑
i,j
i 6=j

∑
k1,...,kN

εk1,...,kN εk1,...,kN
∑
si,sj

∫
d3rid

3rjφ
∗
ki

(i)φ∗kj(j)
1

ri,j
φli(i)φlj(j)

(143)

move the i, j indicies in the Levi-Civita symbols to the front as before (no
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sign change).

=
1

2

1

N !

∑
i,j
i 6=j

∑
ki,kj ,li,lj

∑
k1,...,kN

εki,kj ,k1,...,kN εli,lj ,k1,...,kN︸ ︷︷ ︸
(δki,liδkj,lj−δki,lj δkj,li)(N−2)!

· (144)

·
∑
si,sj

∫
d3rid

3rjφ
∗
ki

(i)φ∗kj(j)
1

ri,j
φli(i)φlj(j) (145)

=
1

2

1

N(N − 1)

∑
i,j
i 6=j

∑
si,sj

∫
d3rid

3rjφ
∗
ki

(i)φ∗kj(j)
1

ri,j
φki(i)φkj(j) (146)

−
∑
si,sj

∫
d3rid

3rjφ
∗
ki

(i)φ∗kj(j)
1

ri,j
φkj(i)φki(j)

 =
1

2

∑
i,j
i 6=j

(Jij −Kij) (147)

Lets do the variation by φ∗i (r, s) and recall that it is essentially the same as
δφ∗i (r,s)

δφ∗j (r′,s′)
= δ(r − r′)δs,s′δi,j, the result is

(
−1

2
∆ + V (r)

)
φi(r, s) +

N∑
j=1
i 6=j

∑
s′

∫
d3r′φ∗j(r

′, s′)v(r − r′)φj(r′, s′)φi(r, s)

(148)

−
N∑
j=1
i 6=j

∑
s′

∫
d3r′φ∗j(r

′, s′)v(r − r′)φi(r′, s′)φj(r, s) =
∑
j

εjiφj(r, s)

(149)

Doing the variation with respect to φi(r, s), the left hand side is just complex
conjugated

c.c. =
∑
j

εijφ
∗
j(r, s) (150)

substaracting the complex conjugate of latter from the former

0 =
∑
j

(
εji − ε∗ij

)
φ∗j(r, s) (151)

εji = ε∗ij (152)
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ε is a Hermitian matrix. It can be diagonalized by unitary transformation. In
the new basis, the equation remains the same (only φ orbitals are changed)
and ε is diagonal(
−1

2
∆ + V (r)

)
φi(r, s) +

N∑
j=1
i 6=j

∑
s′

∫
d3r′φ∗j(r

′, s′)v(r − r′)φj(r′, s′)φi(r, s)

(153)

−
N∑
j=1
i 6=j

∑
s′

∫
d3r′φ∗j(r

′, s′)v(r − r′)φi(r′, s′)φj(r, s) = εiφi(r, s)

(154)

We can write these equations in an e�ective one particle equation[
−1

2
∆ + V (r) + Ji(r)−Ki

]
φi(r, s) = εiφi(r, s) (155)

where the new operators are the Coulomb operator

Ji(r) =
N∑
j=1
i 6=j

∑
s′

∫
d3r′φ∗j(r

′, s′)v(r − r′)φj(r′, s′) (156)

and the exchange operator

Kiφi(r, s) =
N∑
j=1
i 6=j

φj(r, s)
∑
s′

∫
d3r′φ∗j(r

′, s′)v(r − r′)φi(r′, s′) (157)

10 Atomic term symbols and Hund's rules

10.1 Atomic structure

orbital approximation: electrons occupy hydrogen-like atomic orbitals
leading to electron con�guration 1s22s22p2 . . . (note that this is an approx-
imation because the many-particle wavefunction generally can not be con-
structed as a Slater-determinant). Orbitals of the same n quantum num-
ber construct a shell (K,L,M,... for n = 1, 2, 3 . . . ) and each shell consists
of n subshells of orbitals with the same l quantum number (s,p,d,f,... for
l = 0, 1, 2, 3 . . . ).
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shielding: For hydrogen-like atoms, the energy only depends on quan-
tum nuber n, but for many-electron atoms the electron-electron interaction
removes this degeneracy. This is due to the di�erent nuclear screening con-
stant of di�erent subshells. This leads to di�erence in shielding (the e�ective
charge of the nucleus felt by the electron in the presence of other electrons)
for di�erent subshells. From the radial distribution of orbitals, one can de-
termine the extent of shielding felt by the electron. Close to the core region
the shielding increases with increasing l.

Fermi-hole: Another e�ect that removes degeneracy originates from the
Pauli-principle. Parallel spin avoid each other spatially that is called Fermi-
hole (spin correlation). This e�ect decreses the electron-electron repulsion
energy thus decreasing the total energy.

10.2 Term symbols

The term symbol notation gives an appropriate labelling of energy levels split
by electrostatic interactions described above. The good quantum numbers in
the Russel-Saunders (LS) coupling scheme, where the spin-orbit coupling can
be treated as a perturbation, are the angular momentum L, spin S and total
angular momentum J = |L−S|, . . . , L+S quantum numbers (L̂Ŝ commutes
with L̂2, Ŝ2, Ĵ2 and Ĵz). The term notation using these

2S+1LJ (158)

We have seen above that in zeroth order of spin-orbit couplin, the energy
levels split by L and S constructing the atomic level structure. In �rst order
of the perturbation, the energy depends on J leading to the �ne structure.

The construction of term symbols can be made by constructing Slater's
table of microstates. Note that a closed shell or subsell indicates L = 0 and
S = 0 from which J = 0 leading to a 1S0 term. Otherwise the only concern is
the open subshell. For a subshell l, there are 2(2l + 1) possible states for an
electron to occupy. If the subshell is �lled with N electrons, then the number
of microstates is

(
2(2l+1)
N

)
. To each microstate, assign the appropriate mS and

mL quantum numbers. Create a Slater's table with columns of mS and rows
of mL and �ll it with the number of corresponding microstates. From one
cell of the table to the other, we can step by using ladder operators for L
and S. This means, that we can separate L, S states by �nding a maximal m
value and stepping down with ladder operators. This way we get 2S+1L, and
we can calculate the possible values of J = |L− S|, . . . , L+ S. Each 2S+1LJ
term consists of 2J + 1 microstates.
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10.3 Hund's rules

1 The term with maximal S lies lowest in energy.

2 For given S, the highest L lies lowest in energy.

3 For atoms with less than half �lled shells, the lowest J lies lower in
energy (otherwise the highest J).

example: ground state of nitrogen atom. Electron structure
(1s)2(2s)2(2p)3, for 2p subshell l = 1 and 2(2l+ 1) = 6 so we have 6 slots for
the electrons and the number of microstates is 20. (note that the process,
in this case, can be shortened by writing down only the microstates with
positive mS and 'mirroring' Slater's table vertically)

0,
3

2
−2,

1

2
−1,

1

2
0,

1

2
−1,

1

2
× × × × ×

×
× ×

×
× ×

×
× ×
×

0,
1

2
1,

1

2
0,

1

2
1,

1

2
2,

1

2
× ×

×
× ×

×
× ×

×
× ×
×

× ×
×

−3
2
−1

2
1
2

3
2

−2 | |
−1 || ||
0 | ||| ||| |
1 || ||
2 | |

After substracting 4S remains

−3
2
−1

2
1
2

3
2

−2 | |
−1 || ||
0 || ||
1 || ||
2 | |
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After substracting 2D remains

−3
2
−1

2
1
2

3
2

−2
−1 | |
0 | |
1 | |
2

that is 2P . So the states are 4S3/2,
2P1/2,

2P3/2,
2D3/2 and

2D5/2. The highest
spin multiplicity is the ground state: 4S3/2.

11 Dirac equation

Let us consider the relativistic time dependence of a free particle wavefunc-
tion. In the sense of the Schrödinger equation, this must be a �rst order
linear partial di�erential equation in time variable. Relativity theory require
the same treatment of spatial variables. In coordiante representation the
same relations holds for the relativistic case also:

E = i~
∂

∂t
p̂ = −i~∇ (159)

So the new Hamilton operator must be linear in p̂

Ĥ =
3∑
i=1

Gip̂i +G0m (160)

where Gµ are dimensionless constants, the last part accounts for the rest
mass in the total energy. However, the energy-momentum relation must also
hold true

E2 = p2 +m2 = Ĥ2 (161)

this condition gives us the constraint, that in Ĥ2 there are no mixed products.
This cannot be done with scalar constants, but rather maticies with the
speci�c anti-commutation relations

{Gµ, Gν} = 2δµν (162)

with this condition and the generalization for particle in electromagnetic
�eld, the Dirac equation reads

i~
∂Ψ

∂t
=

[
3∑
i=1

Gi(pi − qAi) +G0m+ qV

]
Ψ (163)
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The anti-commutation relation can be satis�ed with 4× 4 matricies, but the
solution is not uniqe. The cannonical choice is

G0 =

(
I 0
0 −I

)
Gi =

(
0 σi
σi 0

)
(164)

where I is the identity matrix and σi are the Pauli-matricies.

σ1 =

(
0 1
1 0

)
σ1 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(165)

notes: the commutation relations of Pauli matricies are

{σi, σj} = 2δij [σi, σj] = 2iεijkσk (166)

The pauli matricies show the same commutation relation as angular momen-
tum (L̂), this is the intrinsic angular momentum Ŝ = ~

2
σ̂ called spin.

12 Consequences of Dirac equation

12.1 Conserved quantity

The total time derivative of an operator Â is

i~
d

dt
Â =

[
Â, Ĥ

]
+ i~

∂A

∂t
(167)

If Â has no explicite time dependence and is a symmetry operator i.e.[
Â, Ĥ

]
= 0, then it represents a conserved quantity.

• Energy
d

dt
Ĥ =

∂H

∂t
(168)

for static external �elds, the energy of the system is conserved.

non-relativistic cases:

H =
N∑
i=1

(
− ~2

2mi

∆i + Vi(ri)

)
+

1

2

∑
i 6=j

vjk(rj − rk) (169)

• Momentum
d

dt
P̂ = −

∑
i

∇iVi(ri) (170)

for zero external �eld (closed system), the total momentum of the sys-
tem is conserved.
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• Angular momentum

d

dt
L̂ =

∑
i

ri × (−∇iVi(ri)) (171)

in central potential (∇iVi(ri) ‖ ri), the angular momentum is conserved.

relativistic case:
without magnetic �eld, in central potential

Ĥ =
3∑
i=1

Gipi +G0m+ qV (172)

[
L̂z, G0m

]
= 0 (173)

trivially [
L̂z, qV

]
= 0 (174)

in central potential.

[
L̂z,

3∑
i=1

Gipi

]
=

3∑
i=1

Gi

[
L̂z, pi

]
=

3∑
i=1

Gi [r1p2 − r2p1, pi] (175)

[r1p2 − r2p1, pi] = r1 [p2, pi]︸ ︷︷ ︸
0

+ [r1, pi]︸ ︷︷ ︸
i~δ1i

p2 − r2 [p1, pi]︸ ︷︷ ︸
0

− [r2, pi]︸ ︷︷ ︸
i~δ2i

p1 = i~ (δ1i − δ2i)

(176)

d

dt
L̂z = G1p2 −G2p1 6= 0 (177)

so L̂ is no more conserved. Let us consider the Pauli matricies (spin operator)

[σ̂z, G0m] = 0 [σ̂z, qV ] = 0 (178)

trivially and [
σ̂z,

3∑
i=1

Gipi

]
=

3∑
i=1

[σ̂z, Gi] pi (179)
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[σ̂z, Gi] =

[(
σ3 0
0 σ3

)
,

(
0 σi
σi 0

)]
=

(
0 [σ3, σi]

[σ3, σi] 0

)
(180)

=



(
0 2iσ2

2iσ2 0

)
= 2iG2, i = 1(

0 −2iσ1

−2iσ1 0

)
= −2iG1, i = 2

0, i = 3

(181)

d

dt
σ̂z = −2

~
(G1p2 −G2p1) (182)

so the relativistic conserved quantity is the total angular momentum

d

dt

(
L̂z +

~
2
σ̂z

)
=

d

dt
Ĵz = 0 (183)

This showes that if one uses the correct relativistic formula, it provides the
correct treatment of rotations where the spin naturally arises.

12.2 Dirac quasi-particle

Consider the stationary Dirac equation[
3∑
i=1

Gi(pi − qAi) +G0m+ qV

]
Ψ = EΨ (184)

here Ψ has four components, but as we have seen, the G matrix can be
separated to 2 × 2 blocks of Pauli matricies. This decomposition can be
made in the wavefunction too

Ψ =


Ψ1

Ψ2

Ψ3

Ψ4

 =

(
Φ
ϕ

)
(185)

where Φ and ϕ are the corresponding spinors. We name Ψ a Dirac bispinor.
Using the form of G matricies, the stationary equation reads

(p− qA)

(
σϕ
σΦ

)
+m

(
Φ
−ϕ

)
+ qV

(
Φ
ϕ

)
= E

(
Φ
ϕ

)
(186)

Let us use the total energy formula E = E ′ +m

(E ′ − qV )Φ− (p− qA)σϕ = 0 (187)
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Figure 2: H+
2 molecule ion parametrization

(2m+ E ′ − qV )ϕ− (p− qA)σΦ = 0 (188)

substituting into each other gives[
qV + (p− qA)σ

1

2m+ E ′ − qV
(p− qA)σ

]
Φ = E ′Φ (189)

e�ective eigenvalue equation. This is similar to the Schrödinger equation of
a quasi-particle.

13 H+
2 molecule ion exact solution

In the Born-Oppenheimer approximation

H = −1

2
∆− 1

ra
− 1

rb
+

1

R
(190)

The symmetry of the molecule ion makes the prolate spheroidal coordinates
the best choice of parametrization.

ra =
R

2
(ξ + η) rb =

R

2
(ξ − η) (191)

ξ =
ra + rb
R

η =
ra − rb
R

(192)

The ξ = const lines are ellipses with foci A and B nuclei. The η = const lines
are hyperbolas with the same foci. The angle of rotation about the molecule
axis is ϕ. ξ plays the role similar to ρ in polar coordinates, while η is similar
to cos θ. The domain of the variables are

1 ≤ ξ ≤ ∞ −1 ≤ η ≤ 1 0 ≤ ϕ ≤ 2π (193)
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The volume element is

dV =
R3

8
(ξ2 − η2) dξ dη dϕ (194)

The Laplacian is

∆ =
4

R2(ξ2 − η2)

{
∂

∂ξ

[
(ξ2 − 1)

∂

∂ξ

]
+

∂

∂η

[
(1− η2)

∂

∂η

]
+

[
1

ξ2 − 1
+

1

1− η2

]
∂2

∂ϕ2

}
(195)

The nuclear attraction terms are

− 1

ra
− 1

rb
= − 4ξ

R(ξ2 − η2)
(196)

without the nuclear attraction term, the Schrödinger equation is

∆Ψ +
8ξ

R(ξ2 − η2)
Ψ + EΨ = 0 (197)

divided by the prefactor of the laplacian

∂

∂ξ

[
(ξ2 − 1)

∂Ψ

∂ξ

]
+

∂

∂η

[
(1− η2)

∂Ψ

∂η

]
+

[
1

ξ2 − 1
+

1

1− η2

]
∂2Ψ

∂ϕ2
(198)

+2RξΨ +
ER2

4
(ξ2 − η2)Ψ = 0 (199)

Let the separable Ansatz be

Ψ = X(ξ)Y (η)F (ϕ) (200)

The separation in ϕ variable[
∂2

∂ϕ2
+m2

]
F (ϕ) = 0 (201)

The solution is
F (ϕ) = eimϕ (202)

Dividing the Schrödinger equation by Ψ gives the separable form

=Λ︷ ︸︸ ︷{
1

X

[
(ξ2 − 1)X ′

]′ − m2

ξ2 − 1
+ 2Rξ +

ER2

4
ξ2

}
+ (203){

1

Y

[
(1− η2)Y ′

]′ − m2

1− η2
− ER2

4
η2

}
︸ ︷︷ ︸

=−Λ

= 0 (204)
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where Λ is another separation constant like m. In order to Ψ be a continous
and single-valued function of ϕ, m must be integer. We have arrived to a
form of two coupled ordinary di�erential eigenvalue problems. The di�culty
is the quantization of Λ before we can obtain the energy eigenvalue E. The
problem has an exact solution with X and Y in a form of in�nite series.

14 H+
2 molecule ion with LCAO-MO method

Let φa and φb be the same normalized atomic orbitals centered on A and B
nucleus respectively. The approximation form the molecular orbital is given
by the linear combination of these

Ψ = c1φa + c2φb (205)

The generalized Schrödinger equation reads

H c = ES c (206)

with Hamilton and overlap matrix

H =

(
α β
β α

)
S =

(
1 S
S 1

)
(207)

where we used the identity and normalization of the atomic orbitals. The
Scrödinger equation ordered to zero is(

α− E β − ES
β − ES α− E

)(
c1

c2

)
= 0 (208)

The secular equation is

(α− E)2 − (β − ES)2 = 0 (209)

α− E = ±(β − ES) (210)

E± =
α± β
1± S

(211)

the corresponding eigenfunctions are

Ψ± = N(φa ± φb) (212)

The normalization factor is∫
|Ψ|2 = N2

∫ |φa|2 ± 2

∫
φaφb︸ ︷︷ ︸
S

+

∫
|φb|2

 = 1 (213)

N =
1√

2(1± S)
(214)
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Let us calculate the solution for 1s atomic orbitals.

φa(1s|r) =
1√
π
e−ra (215)

For the calculation of S, α and β integrals, we use prolate spheroidal coor-
dinates.

S =

∫
φa(1s|r)φb(1s|r)d3r =

∫
1

π
e−(ra+rb)d3r =

(216)

=

∫ 2π

0

dϕ

∫ 1

−1

dη

∫ ∞
1

dξ
R3

8
(ξ2 − η2)

1

π
e−Rξ =

(217)

=
R3

4

∫ 1

−1

dη

∫ ∞
1

dξ (ξ2 − η2)e−Rξ =
R3

4

∫ ∞
1

dξ

[
ξη − 1

3
η3

]1

−1

e−Rξ =

(218)

=
R3

2

∫ ∞
1

dξ

(
ξ2 − 1

3

)
e−Rξ

(219)

The last part is

−R
3

6

∫ ∞
1

dξ e−Rξ = −R
3

6

1

R
e−R = −R

2

6
e−R (220)

The �rst part can be solved by partial integration

R3

2

∫ ∞
1

dξ ξ2e−Rξ =
R3

2

 1

−R
[
ξ2e−Rξ

]∞
1︸ ︷︷ ︸

−e−R

− 2

−R

∫ ∞
1

dξ ξe−Rξ︸ ︷︷ ︸
1
−R [ξe−Rξ]

∞
1
− 1
−R

∫∞
1 dξ e−Rξ

 =

(221)

=
R2

2
e−R +R2

(
1

R
e−R +

1

R

1

R
e−R

)
=

(
R2

2
+R + 1

)
e−R

(222)

The two part together gives

S =

(
1 +R +

R2

3

)
e−R (223)
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Let us calculate α now

α =

∫
d3rφa(1s|r)Ĥφa(1s|r) = E1s − j′ +

1

R
(224)

where

j′ =

∫
d3rφa(1s|r)

1

rb
φa(1s|r) =

∫
d3r

1

π
e−2ra

1

rb
= (225)

=

∫ 2π

0

dϕ

∫ 1

−1

dη

∫ ∞
1

dξ
R3

8
(ξ2 − η2)

1

π
e−R(ξ+η) 1

R
2

(ξ − η)
= (226)

=
R2

2

∫ 1

−1

dη

∫ ∞
1

dξ (ξ + η)e−R(ξ+η) = (227)

=
R2

2

∫ ∞
1

dξ ξe−Rξ︸ ︷︷ ︸
[( ξ
−R−

1
R2 )e−Rξ]

∞
1

∫ 1

−1

dηe−Rη︸ ︷︷ ︸
1
−R (e−R−eR)

+
R2

2

∫ ∞
1

dξe−Rξ︸ ︷︷ ︸
− 1
−R e

−R

∫ 1

−1

dη ηe−Rη︸ ︷︷ ︸
[( η
−R−

1
R2 )e−Rη]

1

−1

= (228)

=
R2

2

(
1

−R
− 1

R2

)
e−R

1

R
(e−R − eR)+ (229)

+
R2

2

1

R
e−R

[(
1

−R
− 1

R2

)
e−R −

(
−1

−R
− 1

R2

)
eR
]

= (230)

= 2

(
−1

2
− 1

2R

)
e−2R +

1

2
+

1

2R
− 1

2
+

1

2R
=

1

R
−
(

1 +
1

R

)
e−2R (231)

and �nally calculate β

β =

∫
d3rφb(1s|r)Ĥφa(1s|r) = E1sS − k′ +

1

R
S (232)

where

k′ =

∫
d3rφb(1s|r)

1

rb
φa(1s|r) =

∫
d3r

1

π
e−(ra+rb)

1

rb
= (233)

=

∫ 2π

0

dϕ

∫ 1

−1

dη

∫ ∞
1

dξ
R3

8
(ξ2 − η2)

1

π
e−Rξ

1
R
2

(ξ − η)
= (234)

=
R2

2

∫ ∞
1

dξe−Rξ
∫ 1

−1

dη(ξ + η)︸ ︷︷ ︸[
ξη+ η2

2

]1
−1

=2ξ

=
R2

2

∫ ∞
1

dξ 2ξe−Rξ = (235)

= R2 1

−R
[
ξe−Rξ

]∞
1︸ ︷︷ ︸

−e−R

− R2

−R

∫ ∞
1

e−Rξ︸ ︷︷ ︸
− 1
−R e

−R

= (R + 1)e−R (236)
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15 H2 molecule con�gurational interaction

Let us recall the solution of H+
2 in the 1s orbital basis set.

Ψ± =
φa ± φb√
2(1± S)

(237)

these molecule orbitals havem = 0 angular momentum quantum number, de-
noted as σ orbitals. The Ψ+ orbital has + eigenvalue under inversion noted as
gerade σg and Ψ− has − eigenvalue noted as ungerade σu. In the MO-LCAO
approximation, the molecular orbitals of hydrogen molecule is constructed
from the product of H+

2 molecular orbitals. This approximation describes
an e�ective independent electron system without electron correlation . The
ground and possible excited states in this basis are

1Σg(1, 2) = σg(1)σg(2) 1χ(1, 2) (238)
3Σu(1, 2) = (σg(1)σu(2)− σu(1)σg(2)) 3χ(1, 2) (239)
1Σu(1, 2) = (σg(1)σu(2) + σu(1)σg(2)) 1χ(1, 2) (240)
1Σg(1, 2) = σu(1)σu(2) 1χ(1, 2) (241)

This energy ordering is intuitive for shorter R distances, but it is not true for
more stretched or broken bond. In the R→∞ limit, we expect two separated
hydrogen atom. This limit can be achieved with only covalent combinations,
this is what VB-theory does by discarding ionic terms. This is not true
for MO-theory, because of the equal covalent and ionic contributions, the
dissociation energy will lie between the energy of separated hydrogen atoms
H + H and separated ions H− + H+. This originates from the uncorrelated
treatment of electrons as they occupy the same molecular orbital leading to
no spatial correlation (left-right correlation). This e�ect is more signi�cant
as R increases. The two 1Σg(1, 2) molecular potential energy curves converge
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to the same energy as R → ∞. These two states has the same symmetry
therefore never cross. They are split by the interaction (electron-electron
repulsion) between them that can be described by con�gurational interaction
(CI). In CI, the ground state is written in a form of linear combination of
states with the same symmetry. Here the linear combination reads

φ(1, 2) = c1σg(1)σg(2) + c2σu(1)σu(2) (242)

Substituting the atomic orbitals into the formula gives

φ(1, 2) =
1

2
(c1+c2) [φa(1)φa(2) + φb(1)φb(2)]︸ ︷︷ ︸

Ψionic

+
1

2
(c1−c2) [φa(1)φb(2) + φb(1)φa(2)]︸ ︷︷ ︸

Ψcovalent

(243)
with the new mixing coe�cients, we introduced a new variable parameter,
leading to the lowering of the ground state. The two 1Σg(1, 2) states are split
this way with R→∞ limit to H+H separated atoms and H−+H+ separated
ions.

16 Correlation diagram

Correlation diagram: Energies of molecular orbitals in the function of
separation distance E(R). In the R = 0 limit, the energies of hydrogen-like
orbitals with united nuclei are noted (e.g. 1sσg). In the R → ∞ limit, the
atomic orbital energies of separated atoms (e.g. σg1s). Latter degenerate
orbitals are split by the Coulomb interaction, as we have seen it in MO-
theory.

σgns = φns(a) + φns(b) (244)

σ∗uns = φns(a)− φns(b) (245)

σgnp = φnpz(a)− φnpz(b) (246)

πunp = φnpx(a) + φnpx(b) (247)

π∗gnp = φnpx(a)− φnpx(b) (248)

σ∗unp = φnpz(a) + φnpz(b) (249)

The ordering of energy can be constructed by considering the constructive
and destructive interference of the atomic orbitals. In the case of s orbitals,
σg molecular orbital lies lower in energy than σ∗u as the latter has a nodal
plane. From the real atomic p orbitals, the overlap of pz orbitals is the great-
est so the energy slitting is also the greatest (with σgnp lying the lowest).
Now let us consider the R → 0 limit. The united atom ns orbital elongates
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Figure 3: Formation of molecular orbitals from p atomic orbitals.

with separation to a nsσg molecular orbital. The p atomic orbitals conserve
their shape in this limit leading to npσu from pz and npπu from px, py . The
correspondence between the two limits is reached by matching them by in-
creasing energy and only connecting the orbitals with same symmetry. This
way no crossing lines exist in the correlation diagram.
Non-crossing rule: If a system depends on N continous parameter, then
the energy of states with the same symmetry can have the same value in a
maximum N − 2 dimensional space. For diatomic molecules, the parameter
space consists only of R that is one dimensional, thus the energies of the
same symmetry can not cross.

Determining a molecular con�guration: if R equilibrium bond distance
is known, the energy order of the molecular orbitals can be read from the
correlation diagramm. Following the Aufbau-principle, we �ll the molecular
orbitals with one electron for each quantum state. Be sure to full�ll Pauli-
principle and Hund's rules.

Bond order =
number of bonding e− − number of antibonding e−

2
(250)

e.g. He2 has the con�guration (σg1s)
2 (σ∗u1s)

2, so the bond order is 0, im-
plying that He2 molecule is not stable. In the case of He+

2 the bond order is
1/2, this is a stable molecule.
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Figure 4: Correlation diagram of homonuclear diatomic molecules

37



17 Orbital hybridization

We have seen that MO-theory describes molecular orbitals as linear combi-
nation of atomic orbitals centered on the nuclei. This leads to good approx-
imation of MO energies and symmetries but in some cases fails to predict
the molecular structure (the observed bond angles) and the bonding of some
atoms. To correct these, orbital hybridization theory uses hybrid atomic or-
bitals constructed by the linear combination of di�erent atomic orbitals of
the same atom. As the di�erent subshells has di�erent energy, this mixing
leads to a promotion in energy thus hybridization is energetically favourable
if it leads to stronger bonds (lower molecular orbital energy). Because of this
promotion, orbitals of similar energy hybridize.

ha =
∑
i

caiφi (251)

where ha are the hybridized AOs and φi are the original hydrogen-like AOs.
The normalization of the hybrid orbitals reads∑

i

c2
ai = 1 (252)

and require that all AOs are fully utilized in hybridization (except isovalent
hybridization) ∑

a

c2
ai = 1 (253)

The hybrid orbitals must be orthogonal.

〈ha |hb〉 = δab (254)

A very important criteria is that the hybrid orbitals must show the molecule
symmetry (they are equivalent against the transformation elements of the
symmetry group of the molecule).

17.1 example: hybridization in hydrocarbon molecules

The ground state con�guration is 1s22s22p2. In the MO teory, carbon atom
has a valance of 2, that can form bonds with 90◦ angle.

However n acetylene C2H2 molecule, carbon atom bonds to 2 other atoms
in a linear structure with 180◦ bond angle. This is explained by sp hybridiza-
tion, 2s and 2pz orbitals hybridize and form a σ bond while px and py form
two π bonds. The promotion of an electron is compensated by the greater
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overlap of sp hybrid orbitals with the hydrogen s orbitals. Generally the two
hybrid orbitals are

h1 = a1φ(2s) + b1φ(2pz) (255)

h2 = a2φ(2s) + b2φ(2pz) (256)

Since the molecule has linear symmetry (D∞h), the hybrid orbitals must
contain the same s character: a1 = a2. Using the completeness and or-
thonormality equations, the resultant hybrid orbitals are

h1 =
1√
2

(φ(2s) + φ(2pz)) (257)

h2 =
1√
2

(φ(2s)− φ(2pz)) (258)

In ethene C2H4 molecule, carbon atom bonds to 3 atoms in a trigonal
planar structure with 120◦ bond angle. This is achieved by sp2 hybridization.
Let the molecule plane be xy, thus pz remains unchanged forming a π bond.
The hybrid orbitals forming σ bonds are

h1 =
1√
3
φ(2s) +

√
2

3
φ(py) (259)

h2 =
1√
3
φ(2s)− 1√

6
φ(py) +

1√
2
φ(px) (260)

h3 =
1√
3
φ(2s)− 1√

6
φ(py)−

1√
2
φ(px) (261)
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In methane CH4 molecule, carbon bonds to 4 hydrogen with 109.5◦ tetra-
hedral angles. This can be achieved by promotion of an electron from 2s to
2p subshell and the formation of four sp3 hybrid orbitals.

h1 =
1

2
(φ(2s) + φ(2px) + φ(2py) + φ(2pz)) (262)

h2 =
1

2
(φ(2s) + φ(2px)− φ(2py)− φ(2pz)) (263)

h3 =
1

2
(φ(2s)− φ(2px) + φ(2py)− φ(2pz)) (264)

h4 =
1

2
(φ(2s)− φ(2px)− φ(2py) + φ(2pz)) (265)

17.2 example: sp hybridization in H2O molecule

The problem of MO theory predicting bond angle of 90◦ arises again in
water molecule. The experimental bond angle is 104.45◦. Let the plane of
the molecule be yz, and 2px is an inert orbital while the hybridization is
amongst 2s, 2pz and 2py. Firstly, we combine the two p orbitals to point
along the two bonds with angle θ.

p = pz cos
θ

2
+ py sin

θ

2
(266)

p′ = pz cos
θ

2
− py sin

θ

2
(267)

where we used that the real p orbitals are simply proportional to x, y and
z coordinates. The mixing with s orbital must respect the symmetry of the
molecule (equal mixing required)

h1 = as+ bp h2 = as+ bp′ (268)

normalization requires
a2 + b2 = 1 (269)
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orthogonality requires

〈h1 |h2〉 =

〈
as+ bpz cos

θ

2
+ bpy sin

θ

2

∣∣∣∣as+ bpz cos
θ

2
− bpy sin

θ

2

〉
= (270)

= a2 + b2 cos2 θ

2
− b2 sin2 θ

2
= a2 + b2 cos θ = 0 (271)

where we used the orthonormality of the atomic orbitals. Using the normal-
ization, b can be eliminated

a2 =
cos θ

cos θ − 1
(272)

this shows us that at 90◦ bond angle we have pure p orbitals and with in-
creasing bond angle the s character of the hybrid increases untill 180◦ where
it reaches 50− 50 per cent. The third hybrid orbital along z-axis is symmet-
rically independent from the �rst two, the general formula is

h3 = a′s+ b′pz (273)

using orthonormalization

a′2 =
1 + cos θ

1− cos θ
(274)

so it changes from pure s to pure pz as the bond angle increases from 90◦

to 180◦. Notice that for θ = 120◦ we get a2 = 1/3, b2 = 2/3, a′2 = 1/3,
b′2 = 2/3 that is called sp2 hybridization.

Now let us see how the electron con�guration changes with the bond an-
gle. At the starting 90◦ angle, we have �lled orbitals p2

x, h
2
3 and bonding

orbitals h1
1, h

1
2 where h3 is pure s orbital and the bonding orbitals are pure p

leading to a con�guration s2p4. However at 180◦ bond angle, h3 is pure pz
orbital, h1 and h2 are 50-50 sp hybrides s1/2p1/2 leading to the con�guration
s1p5. An electron has to be promoted from s to p orbital to achiev this bond
angle. With increasing bond angle, the overall promotion is energetically dis-
adventagious. However the increasing angle lowers the energy by decreasing
the electrostatic bond-bond and nuclear repulsion. Furthermore, the increas-
ing s character of the hybrids increases the overlap in the bond formation,
lowering the total energy. The competition with the promotion has an opti-
mum at 20% promotion, corresponding to the experimentally measured bond
angle.

18 Ih point group

Icosahedral (Ih) point group has the highest group order of 120 amongst
the discrete point groups. The C60 fullerene has this symmetry. It has
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12 pentagon and 20 hexagon faces. The symmetry operations with their
corresponding symmetry elements are

Rotations:

• 12C5 axis through the pentagon centers by ±2π
5

• 20C3 axis trough the hexagon centers by ±2π
3

• 15C2 axis trough the hexagon-hexagon edge centers by 2π
2

Re�ections:

• 15σ plane perpendicular to the opposite hexagon-hexagon edges

Rotore�ections:

• 12S10 axis through the pentagon centers by ±2π
10

• 20S6 axis trough the hexagon centers by ±2π
6

Inversion
Identity
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